Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

Factors controlling pCO₂ variability in the eastern Gulf of Cádiz (SW Iberian Península)

Dolores Jiménez-López¹, Ana Sierra¹, Teodora Ortega¹, Soledad Garrido², Nerea Hernández-Puyuelo¹, Ricardo Sánchez-Leal³, Jesús Forja¹

- ¹ Dpto. Química-Física, INMAR, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 - Puerto Real, Cádiz, Andalucía, España
 - ² Instituto Español de Oceanografía. Centro Oceanográfico de Murcia. Varadero 1. E-30740, San Pedro del Pinatar, Murcia, España
- ³ Instituto Español de Oceanografía. Centro Oceanográfico de Cádiz. Puerto Pesquero, Muelle de Levante s/n. Apdo. 2609. E 11006, Cádiz, España

Correspondence to: Dolores Jiménez-López (dolores.jimenez@uca.es)

Abstract

15

20

Spatiotemporal variations of the partial pressure of CO_2 (p CO_2) were studied during 8 oceanographic cruises conducted between March 2014 and February 2016 in surface waters of the eastern shelf of the Gulf of Cádiz (SW Iberian Península) between the Guadalquivir River and Cape Trafalgar. p CO_2 presented a range of variation between 320.6 and 513.6 μ atm, with highest values during summer and autumn and lowest during spring and winter, showing a linear dependence between p CO_2 and temperature. The distributions of p CO_2 were not homogeneous. Spatially, there was a general decrease from coastal to off-shore stations associated with continental inputs and presented an increase in the zones deeper than 400 m due to the influence of the eastward branch of the Azores Current. On the other side, the study area acted as source of CO_2 to the atmosphere during summer and autumn and as a sink in spring and winter, with a mean value for the study period of -0.18 \pm 1.32 mmol m $^{-2}$ d $^{-1}$. In the Guadalquivir and Sancti Petri sections, the CO_2 fluxes decreased towards offshore, whereas in the Trafalgar section increased due to the presence of an upwelling. These results highlighted the Gulf of Cádiz as a CO_2 sink, with a capture capacity of 14.9 Gg year $^{-1}$.

1. Introduction

25 Continental shelves play a key role in the global carbon cycle, as this is where the interactions between terrestrial, marine and atmospheric systems take place (Mackenzie et al., 1991; Walsh, 1991; Smith and Hollibaugh, 1993). These zones are considered to be among the most dynamic in biogeochemical terms (Wollast, 1991; Bauer et al., 2013), as they are affected by several factors, particularly high rates of primary production, remineralization and organic carbon burial (Walsh, 1988; Wollast, 1993; de Hass et al., 2002). Continental shelves account for about 10 – 15 % of the ocean primary production and they contribute approximately 40 % of the ocean's total carbon sequestration, by particulate organic carbon (Muller-Karger et al., 2005).

Generally, waters over the continental shelf account for ~15 % of the global ocean CO_2 uptake (-2.6 \pm 0.5 Pg C yr⁻¹, Le Quéré et al., 2017). Using direct surface ocean CO_2 measurements from the global Surface Ocean CO_2 Atlas (SOCAT) database, Laruelle et al. (2014) estimated a sea-air exchange of CO_2 in these zones of -0.19 \pm 0.05 Pg C yr⁻¹, lower than other studies published in the last decade (e.g. Borges et al., 2005; Cai et al., 2006; Chen and Borges, 2009; Laruelle et al., 2010; Chen et al., 2013). The discrepancies with respect to this estimation derive from the different definitions of the continental shelf domain and the skewed distribution of local studies (Laruelle et al., 2010). In several studies, it has been observed that the continental

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

40

45

50

55

60

65

70

75

shelves present different behaviours according to their latitude: they tend to act as a sink of carbon (-0.33 Pg C yr⁻¹) at high and middle latitudes (30 - 90°) and as a weak source (0.11 Pg C yr⁻¹) at low latitudes (0 - 30°) (Cai et al., 2006; Hofmann et al., 2011; Bauer et al., 2013; Chen et al., 2013; Laruelle et al., 2014, 2017). Laruelle et al. (2010) found differences between the two hemispheres: the continental shelf seas of the Northern Hemisphere are a net sink of CO_2 (-0.24 Pg C yr⁻¹) and those of the Southern Hemisphere are a weak source of CO_2 (0.03 Pg C yr⁻¹).

The behaviour of the continental shelf presents a high spatiotemporal variability of the air-sea CO₂ fluxes due to various processes, particularly thermodynamic effects, biological processes, gas exchange, upwelling zones and continental inputs (e.g. Chen and Borges, 2009; Ito et al., 2016). Thermodynamic effects are controlled by the inverse relationship between temperature and solubility (0.0423 °C⁻¹, Takahashi et al., 1993), which produces changes in CO₂ dissociation. Biological processes can induce CO2 uptake or release, deriving respectively from phytoplankton photosynthesis that decreases the concentration of inorganic carbon, and respiration by plankton and all other organisms (Fennel and Wilkin, 2009). Both, thermodynamic effects and biological processes are associated with the sea-air CO₂ exchange by physical and biological pumps (Volk and Hoffert, 1985). The effects of upwelling systems generate uncertainty (Michaels et al., 2001). Although this process produces a vertical transport that brings up CO₂ and remineralized inorganic nutrients from deep seawater (Liu et al., 2010), upwellings are also responsible for high rates of primary production and a reduction of pCO₂ under the equilibrium with the atmosphere (e.g. van Geen et al., 2000; Borges and Frankignoulle, 2002; Friederich et al., 2002). Several studies indicate that these systems act as either a source or sink of CO₂ depending on their location (Cai et al., 2006; Chen et al., 2013) and the ocean considered. Upwelling systems at low latitudes act mainly as a source of CO2 but as a sink of CO2 at mid-latitudes (Frankignoulle and Borges, 2001; Feely et al., 2002; Astor et al., 2005; Borges et al., 2005; Friederich et al., 2008; González-Dávila et al., 2009; Santana-Casiano et al., 2009). Upwelling systems in the Pacific and Indian Oceans act as sources of CO2 to the atmosphere, whereas in the Atlantic Ocean they are sinks of atmospheric CO₂ (Borges et al., 2006; Laruelle et al., 2010).

The Gulf of Cádiz, located on the south-west of the Iberian Peninsula, is part of the Iberian/Canaries Current System and the Eastern Boundary Upwelling System (EBUS) (Borges et al., 2006; Relvas et al., 2007; Arístegui et al., 2009; Laruelle et al., 2010). Although it is really a sub-region of this upwelling system; however, it has a seasonal behaviour due to the coastline configuration and the exchange of water masses with the Mediterranean Sea (Arístegui et al., 2009). Finally, the inner shelf because it is more affected by riverine inputs of nutrients and terrestrial carbon (e.g. Gypens et al., 2011; Vandemark et al., 2011) and by human impact (Cohen et al., 1997). The influence of both factors, riverine inputs and human impact, decrease towards offshore (Walsh, 1991). Several studies have determined that the inner shelf tends to act as a source of CO₂ and the outer shelf as a sink (e.g. Rabouille et al., 2001; Cai, 2003; Jiang et al., 2008, 2013; Arruda et al., 2015). The inner platform (depth less than 40 m) also presents greater seasonal variability of temperature than the outer platform, and consequently the effect of temperature on pCO₂ will be greater in the inner platform (Chen et al., 2013).

The Gulf of Cádiz is a geographical domain of considerable interest due to its location. In addition to receiving the outflow of Mediterranean waters through the Strait of Gibraltar, it receives freshwater inputs from several major rivers, i.e. Guadalquivir, Tinto, Odiel and Guadiana. Various studies have been conducted in this area to evaluate the variability of the sea surface pCO₂, although they cover smaller areas and shorter duration of time than this work (González-Dávila et al., 2003; Aït-Ameur and Goyet, 2006; Huertas et al., 2006; Ribas-Ribas et al., 2011) or only a specific area like the Strait of Gibraltar (Dafner et al., 2001; Santana-Casiano et al., 2002; de la Paz et al., 2009). All of these studies, however, have determined that this zone behaves as a global sink of CO₂, with seasonal variations mainly induced by the combination of the fluctuations of biomass concentration and temperature.

Manuscript under review for journal Ocean Sci. Discussion started: 15 February 2019

© Author(s) 2019. CC BY 4.0 License.

80

85

90

95

100

105

110

In the study reported in this paper, the main objective is to evaluate the spatial and seasonal variation of the sea-surface CO_2 on the eastern shelf of the Gulf of Cádiz. In addition, we aim to assess the relative contribution of the temperature and non-temperature effects to the total CO_2 concentration, and to determine if the area as a whole acts as a sink or a source of CO_2 to the atmosphere over time. To do this, we have analysed a surface measurement database of >26000 values of p CO_2 during cruises made between 2014 and 2016 and covering a 0.8° x 1.3° area of the Gulf of Cádiz.

2. Material and methods

2.1. Study area

This study was carried out over the eastern shelf of the Gulf of Cádiz (Fig. 1), which forms a large basin between the southwest of the Iberian Peninsula and the northwest of Africa, where the Atlantic Ocean connects with the Mediterranean Sea through the Strait of Gibraltar. In the Strait of Gibraltar takes place a bilayer flow, with an upper Atlantic layer flowing towards the Mediterranean basin and a deeper outflow of higher-density Mediterranean waters to the Atlantic Ocean (e.g. Armi and Farmer, 1988; Baringer and Price, 1999; Sánchez-Leal et al., 2017). A similar circulation pattern of opposing flows is found in the Gulf of Cádiz where three main water masses are distributed at well-defined depth intervals and areas: the Surface Atlantic Water (SAW), with coastal and atmospheric influence, inflowing at the shallowest depths; the Eastern North Atlantic Water (ENACW), at an intermediate depth, characterised by low salinity; and the Mediterranean Outflow Water (MOW), entering at the deepest level (Criado-Aldeanueva et al., 2006; Bellanco and Sánchez-Leal, 2016).

The Gulf of Cádiz is part of one of the four major EBUS of the world, the North Atlantic upwelling (e.g. Alvarez et al., 2009), that extends from south of Cape Verde (Senegal) to Cape Finisterre (northwest of Spain). For this reason, the Gulf of Cádiz presents characteristics typical of this EBUS: seasonal variability of a winds system favourable to the coastal upwelling (Fiúza et al., 1982), high biological productivity (Navarro and Ruiz, 2006), a system of fronts and zonal currents (García Lafuente and Ruiz, 2007) and a zone of water exchange between the coastal zone and open ocean (Sánchez et al., 2008). However, the fact that the coastline of the study area runs more in a W-E direction than the overall N-S direction common to all the EBUS phenomena, and the bilayer flow through the Strait of Gibraltar, are two factors that complicate the simple EBUS conceptual model (Peliz et al., 2009).

In addition, the surface circulation in the Gulf of Cádiz is characterised by several different processes. These are: first the presence of an anticyclonic water flow towards the east over the shelf edge as far south as the Strait of Gibraltar, known as the Gulf of Cádiz Current (Sánchez and Relvas, 2003; Peliz et al., 2007); second, in the Trafalgar area an upwelling process occurs, produced by tidal interaction with the topography of the zone; and third, the mixing of surface layers induced by the wind (Vargas-Yáñez et al., 2002; Sánchez and Relvas, 2003; Peliz et al., 2009; Sala et al., 2018). In addition, the centre of the Gulf is under the influence of the eastern-end branch of the Azores Current, producing a front subjected to a mesoscale variability (Johnson and Stevens, 2000; García-Lafuente and Ruiz, 2007; Peliz et al., 2007; Sala et al., 2013).

2.2. Field sampling and analysis

The database for this study has been obtained following two different sampling strategies. The first one consisted on taking sea surface measurements underway. Meanwhile, the second one acquired the measurement at several discrete surface stations along three transects perpendicular to the coastline: the Guadalquivir transect (GD), the Sancti Petri transect (SP) and the Trafalgar transect (TF) (Fig. 1). Data was recollected during 8 cruises carried out with a seasonal frequency (spring: ST1 and ST5; summer: ST2 and ST6; autumn: ST3 and ST7; winter: ST4 and ST8) during 2014, 2015 and 2016 (precise dates are indicated in Table 1). All the cruises were carried out on board the R/V Ángeles Alvariño, except the one of summer 2015

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

120

125

140

(ST6) that was carried out on board the R/V Ramón Margalef. The study area is located between 35.4 and 36.7° N and 6.0 and 7.2° W (52.8·10² Km²).

2.2.1. Underway measurements

Sea surface temperature (T), sea surface salinity (S) and the CO_2 partial pressure (pCO₂) were recorded continuously and were averaged with a frequency of 1 min intervals, from the surface seawater supply of the ship (pump inlet at a depth of 5m). T and S were measured using a SeaBird thermosalinograph (SeaBird 21) with an accuracy of ± 0.01 °C and ± 0.003 respectively. The equilibrator design for determining the pCO₂ is a combination of a laminar flow system with a bubble type system, similar to that developed by Körtzinger et al. (1996) and described by Padin et al. (2009, 2010).

The surface water CO_2 molar fraction (xCO₂) and H_2O were determined using a non-dispersive infrared gas analyser (Licor®, LI 6262) that has a minimum accuracy of ± 0.3 ppm. It was calibrated daily using two standards: a CO_2 free-air for the blank and a CO_2 sub-standard gas of known concentration (413.2 ppm). CO_2 concentration of the sub-standard gas was determined from the comparison with standard gases of NOAA with an uncertainty of 0.22 ppm and measured with a Licor 6262 (± 1 ppm). The temperature inside the equilibrator was measured continuously by means of a platinum resistance thermometer (PT100 probe, ± 0.1 °C). A pressure transducer (Setra Systems, accurate to 0.05 %) was used to measure the pressure inside the equilibrator.

The xCO₂ was converted into pCO₂ according to the protocol described in DOE (2007): corrections by water vapour pressure and water surface temperature have been made since the equipment quantifies in dry air and the temperature registered in the equilibrator is different to the T. The temperature difference between the ship's sea inlet and the equilibrator was less than 1.5 °C.

2.2.2. Fixed stations

Discrete surface samples were taken at 5 m depth, using Niskin bottles (10 L) mounted on a rosette-sampler coupled to a SeaBird CTD 911+, to measure pH, chlorophyll-a concentration and nutrients.

The pH was measured by potentiometer in duplicate using 100 mL of seawater with a glass-combined electrode (Metrohm, 905) calibrated on the total pH scale using a TRIS buffer solution (Zeebe and Wolf-Gladrow, 2001). For chlorophyll-a determination, 1 L of seawater was filtered (Whatman, GF/F $0.7~\mu m$) and frozen (-20 °C) until analysis in the lab. Total chlorophyll-a was extracted with 90 % pure Acetone, and quantified after 24 hours by fluorometry analysis (Hitachi F-2500) (Yentsch and Menzel, 1963). Nutrient samples for analysis of nitrate and phosphate content were filtered through precombusted glass-fibre filters (Whatman, GF/F $0.7~\mu m$) and frozen at -20 °C. Analyses were performed in a segmented flow autoanalyzer (Skalar, San Plus) based on classic spectrophotometric methods (Grasshoff et al., 1983).

Moreover, at these stations, Apparent Oxygen Utilization (AOU) was calculated applying the solubility expression proposed by Weiss (1974) employing dissolved oxygen values registered by the sensor of the rosette (SeaBird 63) that have been checked using Winkler titrations (±0.1 µmol L⁻¹).

The accuracies of the determinations obtained are the following: ± 0.003 for pH, ± 0.1 µg L⁻¹ for chlorophyll-a, ± 0.10 µmol L⁻¹ for nitrate, ± 0.02 µmol L⁻¹ for phosphate and ± 0.1 µmol L⁻¹ for dissolved oxygen.

The corresponding data of T, S and pCO₂ were obtained by the underway measurements averaging data corresponding to 0.5 mile around the location of the fixed stations.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

155

175

2.3. Temperature and biological effects on pCO2 calculations

To determine the relative importance of the temperature and biological effects on the changes of pCO₂ in sea water, we follow the method proposed by Takahashi et al. (2002). To remove the temperature effect from the observed pCO₂, the data were normalized to a constant temperature, the mean in situ T depending on the focus considered, according to Eq. (1).

$$pCO_2$$
 at $T_{mean} = (pCO_2)_{obs} \cdot exp[0.0423 \cdot (T_{mean} - T_{obs})]$ (1)

where the subscripts "mean" and "obs" indicate the average and observed T values, respectively.

The effect of temperature changes on pCO₂ has been computed by perturbing the mean pCO₂ with the difference between the mean and observed temperature. The pCO₂ value at a given observed temperature (T_{obs}) was calculated based on Eq. (2).

160 pCO₂ at
$$T_{obs} = Mean pCO_2 \cdot exp[0.0423 \cdot (T_{obs} - T_{mean})]$$
 (2)

When the temperature effect is removed, the remaining variations in pCO_2 are due to the effect of biology, such as net biological utilization of CO_2 , the vertical and lateral transport and sea-air exchange of CO_2 .

The biological effect on the surface water pCO₂ in a given area, $(\Delta pCO_2)_{bio}$, is represented by the seasonal amplitude of pCO₂ values normalized to the mean T, $(pCO_2 \text{ at } T_{mean})$, using Eq. (1):

165
$$(\Delta pCO_2)_{bio} = (pCO_{2, Tmean})_{max} - (pCO_{2, Tmean})_{min}$$
 (3)

The temperature effect of changes on the mean annual pCO₂ value, $(\Delta pCO_2)_{temp}$, is represented by the seasonal amplitude of $(pCO_2 \text{ at } T_{obs})$, using Eq.(2):

$$(\Delta pCO_2)_{temp} = (pCO_2, Tobs)_{max} - (pCO_2, Tobs)_{min}$$
(4)

The relative importance of the temperature and biology effects can be expressed by the ratio, T/B:

170
$$T/B = (\Delta pCO_2)_{temp} / (\Delta pCO_2)_{bio}$$
 (5)

2.4. Estimation of CO2 fluxes

Fluxes of CO_2 across the sea-air interface were estimated using the relationship:

$$FCO_2 = \alpha \cdot k \cdot (\Delta pCO_2)_{\text{sea-air}} \tag{6}$$

where k (cm h⁻¹) is the gas transfer velocity; α is the solubility coefficient of CO₂ (Weiss, 1974); and ΔpCO₂ is the difference between the sea and air values of pCO₂. The atmospheric pCO₂ (pCO₂^{atm}) values were obtained from the monthly atmospheric data of xCO₂ (xCO₂^{atm}) at the Izaña Atmospheric Station (Spain), (Earth System Research Laboratory; https://www.esrl.noaa.gov/gmd/dv/data/index.php, last access: 9 January 2019). The xCO₂^{atm} was converted to pCO₂^{atm} as described in DOE (2007).

The gas transfer velocity, k, was calculated using the parameterization formulated by Wanninkhof (2014):

180
$$k = 0.251 \cdot u^2 (Sc/660)^{-0.5}$$
 (7)

where u (m s⁻¹) is the mean wind speed at 10 m height on each cruise, obtained from the Shipboard Weather Station; Sc is the Schmidt number of CO_2 in seawater, and 660 is the Sc in seawater at 20 °C.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

195

210

215

220

2.5. Statistical analysis

Statistical analyses were performed with IBM SPSS Statistics software (Version 20.0. Armonk, NY). The dataset was analysed using one-way analysis of variance test (ANOVA) for analysing significant differences between cruises for discrete and continuous surface data on hydrological and biogeochemical characteristics. The threshold value for statistical significance was taken as p < 0.05.

3. Results

190 3.1. Underway variables

Table 1 gives the ranges of variation and the mean and standard deviation of T, S and pCO₂ during the 8 sampling cruises. Figure 2 shows the underway distribution of T and pCO₂ in the Gulf of Cádiz.

T values were significantly different among all cruises (p < 0.05), varying between 14.3 and 23.4 °C. In general, the samplings made during 2014 presented temperatures higher than 2015 and 2016 (Table 1). For the whole period, the averaged values for both seasons were highest during summer (21.2 \pm 1.3 °C) and autumn (21.0 \pm 0.8 °C), with the lowest values during spring (15.5 \pm 0.5 °C). During winter, T showed an intermediate value of 17.6 \pm 0.9 °C. Spatially T tended to increase from coastal to offshore areas, with a difference of ~11.8 °C (Fig. 2A). No substantial differences were found between the three transects studied (GD, SP and TF) in terms of temperature data. The lowest values of T were detected near the Guadalquivir River mouth and Cape Trafalgar (36.19° N, 6.03° W), due to freshwater inputs and the frequent upwelled waters, respectively.

S values remained practically constant throughout the whole study period, although average values varied significantly among the cruises (p < 0.05), with values ranging between 34.68 and 37.06. The highest values were recorded during September 2015 (36.44 ± 0.09) and lowest during February 2016 (35.64 ± 0.08) (Table 1). No spatial or seasonal variations were observed. However, during December 2014, in the area of the Guadalquivir River was measured the lowest salinity value (34.68), related with a storm period that led to very heavy freshwater discharges. On the other hand, TF was the area that presented the highest mean salinity value for the whole study (36.19 ± 0.25).

During our study period, pCO₂ values ranged from 320.6 to 513.6 μ atm. Highest values were recorded during summer and autumn of 2014 and 2015 (Table 1), with a similar mean value found for both seasons, 411.7 \pm 13.3 μ atm and 411.3 \pm 10.7 μ atm, respectively. The lower mean value (390.3 \pm 15.2 μ atm) was logged during winter and the lowest mean value (383.9 \pm 22.1 μ atm) during spring. In general, the pCO₂ tended to decrease with the distance to the coast (Fig. 2B). Δ pCO₂ values ranged between -37.5 \pm 14.9 μ atm during March 2015, and 16.5 \pm 9.5 μ atm during October 2014. Moreover, an oversaturation relative to the atmosphere was evidenced during spring and winter for both years. In Fig. 2B a sharply variation of pCO₂ can be observed at some zones. These coincide with those stations where discrete water samples were taken. This may be due to the daily variation (day/night) presented by pCO₂, since the sampling procedure did not take the same amount of time at each station – it varied in function of the depth of the system in each zone. It is possible that during the daytime, the pCO₂ values were higher than at night.

3.2. Discrete surface variables

Table 2 shows the average values and standard deviation of temperature, salinity, pH, AOU, chlorophyll-a, nitrate and phosphate measured at fixed stations along the three transects during the 8 cruises.

The pH presented significant differences among the cruises (p < 0.05), with a range of variation from 7.84 to 8.34. Lowest mean values were found during summer and autumn of 2014 and 2015 (Table 2), coinciding with the highest average values

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

225

240

of pCO₂ were recorded (Table 1). The minimum value of pH were found in September 2015 (7.49 \pm 0.03) and the maximum in March 2015 (8.09 \pm 0.12).

AOU was significantly different between all the cruises (p < 0.05), and a clear seasonal variability was not observed. Values measured ranged from -31.9 to 12.3 μ mol L⁻¹, with the highest values in December 2014 (7.7 \pm 2.1 μ mol L⁻¹) and the lowest in March 2015 (-19.1 \pm 9.4 μ mol L⁻¹) (Table 2). During spring was registered the lowest mean value for both years (-10.9 \pm 11.7 μ mol L⁻¹); higher mean values were found in summer (- 6.3 \pm 6.1 μ mol L⁻¹) and winter (4.2 \pm 6.3 μ mol L⁻¹). All values were negative except for those of December 2014; that exception may have been due to the exceptional mixing of the water column caused by the storm.

Chlorophyll-a values presented significant differences among the cruises and between the same seasons of each year (p < 0.05). This parameter varied from 0.02 to 2.37 $\mu g \ L^{-1}$, with the highest mean value measured in March 2015 (0.76 \pm 0.55 $\mu g \ L^{-1}$), which coincides with the lowest (negative) mean value of AOU (Table 2). The lowest mean value was in June 2014 (0.18 \pm 0.14 $\mu g \ L^{-1}$). With reference to the seasons of both years, the highest value was in spring (0.72 \pm 0.46 $\mu g \ L^{-1}$), followed by winter (0.47 \pm 0.31 $\mu g \ L^{-1}$), autumn (0.28 \pm 0.30 $\mu g \ L^{-1}$) and the lowest value in summer (0.22 \pm 0.26 $\mu g \ L^{-1}$). The SP transect presented the mean lowest value of the whole study (0.33 \pm 0.31 $\mu g \ L^{-1}$), and the TF zone the highest (0.49 \pm 0.37 $\mu g \ L^{-1}$).

Nitrate concentration did not show significant differences among all the cruises (p > 0.05), ranging between 0.00 and 1.93 μ mol L⁻¹. The highest value was found in December 2014 (1.05 ± 1.96 μ mol L⁻¹) and the lowest in June 2015 (0.12 ± 0.14 μ mol L⁻¹) (Table 2). The highest mean value was recorded in winter (0.87 ± 1.70 μ mol L⁻¹) and the lowest in summer (0.27 ± 0.45 μ mol L⁻¹) of both years. TF presented the highest mean concentration for the whole study (0.77 ± 0.76 μ mol L⁻¹).

Phosphate concentration showed significant differences among all the cruises (p < 0.05). By season, the highest mean value was obtained during autumn (0.31 \pm 0.45 μ mol L⁻¹), although the average data in October 2014 (0.09 \pm 0.03 μ mol L⁻¹) was lower than 2015 (0.50 \pm 0.55 μ mol L⁻¹) (Table 2). The minimum mean value was observed during summer (0.11 \pm 0.05 μ mol L⁻¹). GD presented the highest mean value of the whole study (0.28 \pm 0.39 μ mol L⁻¹), and the lower values were found in the TF, and SP transects, with a similar value, 0.15 \pm 0.07 μ mol L⁻¹ and 0.14 \pm 0.09 μ mol L⁻¹, respectively.

3.3. Air-sea CO2 exchange

Table 3 summarizes the mean values and standard deviation for atmospheric pCO₂, wind speed, gas transfer velocity and the air-sea CO₂ fluxes measured in this study.

The mean wind speeds were relatively similar for the whole study period, ranging between 5.5 ± 2.8 m s⁻¹ (March 2015) and 7.7 ± 4.2 m s⁻¹ (December 2014). The gas transfer velocity varied between 6.9 ± 0.1 cm h⁻¹ in March 2015 and 14.4 ± 0.3 cm h⁻¹ in June 2015, since it is very sensitive to changes in wind speed $(4.6 \text{ cm h}^{-1} / \text{m s}^{-1} \text{ at } 20 \text{ °C})$.

There was a clear seasonal variability in the dataset of CO_2 fluxes (p < 0.05). The study area acted as source of CO_2 to the atmosphere during summer and autumn (0.7 \pm 0.3 mmol m⁻² d⁻¹ and 1.2 \pm 0.4 mmol m⁻² d⁻¹ respectively) and as a sink in spring and winter (-1.3 \pm 1.4 mmol m⁻² d⁻¹ and -1.3 \pm 0.01 mmol m⁻² d⁻¹ respectively).

4. Discussion

4.1. General trends

Numerous research studies have determined that temperature is one of the most important factors that control the variability of pCO₂ in the ocean (e.g. Millero, 1995; Bates et al., 2000; Takahashi et al., 2002; Carvalho et al., 2017), as a consequence of the dependence of the solubility of CO₂ with the temperature (Weiss, 1974; Woolf et al., 2016). When pCO₂ is affected only

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

275

280

285

290

295

by the temperature, Takahashi et al. (1993) determined a relative variation of pCO₂ of 0.0423 $^{\circ}$ C⁻¹, equivalent to 17.4 μ atm $^{\circ}$ C⁻¹ for experimental pCO₂ of 400 μ atm.

Figure 3A shows the dependence of the values of pCO₂ with T for the entire database, where a linear increase of pCO₂ with T $(r^2 = 0.37, p < 0.0001)$ was observed. This relationship becomes more significant when it is obtained from the mean values of T and pCO₂ of each cruise $(r^2 = 0.71, p < 0.01, Fig. 3B)$. The slope, 4.80 μ atm °C⁻¹, is lower than the thermal effect on pCO₂ described by Takahashi et al. (1993), and indicates the influence of other processes on the distribution of pCO₂ in this zone of the Gulf of Cádiz.

Table 4 gives the values for the dependence of pCO₂ with temperature on various continental shelves determined in other studies. The authors of these studies describe the influence of other processes on the relationship between pCO₂ and temperature, such as the vertical mixing of the water column (Wang et al., 2000; Xue et al., 2012), continental inputs (Shim et al., 2007; Xue et al., 2012), the influence of surface currents at different temperature (Shim et al., 2007; Jiang et al., 2008), upwelling phenomena (Wang et al., 2005; Jiang et al., 2008; Xue et al., 2012) and biological activity (Wang et al., 2005; Shim et al., 2007; Ribas-Ribas et al., 2011).

There are previous studies in which the seasonal variations of pCO₂ in more coastal zones of the Gulf of Cádiz (depth < 100 m) are described. In 2003, Huertas et al. (2006) found variations of pCO₂ ranging between 196 μ atm in March and 400 - 650 μ atm in August in a zone situated more to the west, between the rivers Guadalquivir and Guadiana. Ribas-Ribas et al. (2011) established during 2006 - 2007, a dependence of pCO₂ with temperature similar to that found in this study (5.03 μ atm °C⁻¹), and mean annual values of 369.3 \pm 31.3 μ atm. Also in 2006, de la Paz et al. (2009) established a variation of pCO₂ between 329 μ atm in March and 387 μ atm in September in the Strait of Gibraltar, a deeper zone situated at the southeastern limit of the Gulf of Cádiz.

There are other studies not concerned with seasonal differences that have quantified pCO₂ in different zones of the Gulf of Cádiz. Santana-Casiano et al. (2002) found pCO₂ values of $332.2 \pm 3.9 \, \mu atm$ in the Strait of Gibraltar during September 1997, and González-Dávila et al. (2003) determined pCO₂ values of $330.6 \pm 5.6 \, \mu atm$ on a transect at right-angles to the coastline in the zone of the Guadalquivir, carried out in February 1998. Aït-Ameur and Goyet (2006) reported variations of pCO₂ ranging between 300 and 450 $\, \mu atm$ for an extensive region of the Gulf of Cádiz in 2002.

Comparing the data given in those previous studies with the mean value found in this study (398.9 \pm 15.5 μ atm), it is evident that there has been an increase of pCO₂ in the Gulf of Cádiz during the last decade, even taking into account the uncertainty associated with the different measurement techniques employed. When we compare this mean value with the value found in the shallower and deeper studied zones of the Gulf of Cádiz by Ribas-Ribas et al. (2011), who used the same methodology, there has been an increase of pCO₂ of 37.6 μ atm in the last decade. For the period of time between 2006 and 2016, the rate of growth of pCO₂ in the surface waters of the Gulf of Cádiz (3.8 μ atm year⁻¹) exceeds the rate of increase of pCO₂ in the atmosphere (2.3 μ atm year⁻¹ for the last 10 years in Izaña (Earth System Research Laboratory; https://www.esrl.noaa.gov/gmd/dv/data/index.php, last access: 9 January 2019); this suggests there may have been changes in the continental inputs of nutrients and C related to anthropogenic activity (Rabouille et al., 2001).

Since the cruises were carried out at the beginning of each meteorological season, it is appropriate to analyse how representative is the range of temperatures that has been obtained. Figure 4 shows the mean value of the last 10 years for the maximum and minimum temperatures in the Gulf of Cádiz acquired by a mooring (bottom-mounted at 36.48° N - 6.96° W; Puertos del Estado; http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx, last access: 12 July 2018), and the mean values and standard deviations of the 8 cruises are superimposed. It can be observed that the mean values for each cruise are

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

320

325

330

within the ranges of variation of the typical temperature in the Gulf of Cádiz, and the mean temperature found, $18.8 \,^{\circ}$ C, is similar to the mean value obtained at the mooring (19.2 $^{\circ}$ C, Fig. 4). If the dependence of pCO₂ with temperature is taken to be $4.80 \, \mu$ atm $^{\circ}$ C⁻¹, one would expect that the mean values of pCO₂ obtained in this study would be approximately 2 μ atm higher.

The database of this study includes the transition from coastal zones, with depths of the order of 15 - 20 m, to distal shelf waters with depths greater than 800 m. Figure 5 shows the mean values of pCO₂ and temperature for different intervals of depth of the water column based on the information obtained in the 8 cruises. It can be observed that the highest values of pCO₂ (408.3 ± 26.7 μatm) correspond to the coastal zone (< 50 m), and that values decrease down to 100 - 200 m of depth (396.1 ± 23 μatm). In addition, towards open waters (> 600 m) there is a progressive increase of pCO₂ and temperature (404.3 ± 16.5 μatm and 20.1 ± 2.4 °C respectively).

Several authors have described the influence of the continental inputs on the distribution of pCO₂ in surface waters; the coastal zone is usually oversaturated with CO₂, whereas the continental shelf as a whole acts as a sink of atmospheric CO₂ (e.g. Rabouille et al., 2001; Chen and Borges, 2009).

The principal continental inputs in the northeast zone of the Gulf of Cádiz take place from the estuary of the Guadalquivir and from the systems associated with the Bay of Cádiz. De la Paz et al. (2007) found values of pCO₂ higher than 3000 μatm in the internal part of the estuary of the Guadalquivir, and Ribas-Ribas et al. (2013) established that this estuary acts as an exporter system of C, nutrients and water oversaturated with CO₂ to the adjoining coastal zone. The importance of the contributions from the Guadalquivir on the distribution of pCO₂ depends on the river's flow rate, as can be appreciated in Fig. 3. In March 2014 (ST1, green) high values of pCO₂ (up to 500 μatm) were observed in the zone close to the mouth, as a consequence of the river's high flow rate (between 192.7 and 299.2 m³ s⁻¹, Confederación Hidrográfica del Guadalquivir; http://www.chguadalquivir.es/saih/DatosHistoricos.aspx, last access: 19 Juny 2018) while in the spring of 2015 (ST5, dark green) the lowest values of the study were recorded in this zone (as low as 320 μatm) during a period of drought (flow rate 20 m³ s⁻¹) and subject to intense biological activity associated with the highest value found of the concentration of chlorophyll-a (2.4 μg L⁻¹).

The Bay of Cádiz occupies an area of 38 km², and receives urban effluents from a population of 640,000 inhabitants. This shallow zone is oversaturated with CO₂ (Ribas-Ribas et al., 2011) due largely to the inputs of CO₂, organic matter and nutrients that are received from the river Guadalete and the Sancti Petri and River San Pedro tidal creeks (de la Paz et al., 2008a, b; Burgos et al, 2018).

Another source of CO_2 in the coastal zone results from the net production of inorganic carbon derived from the processes of remineralization of the organic matter in the surface sediments originated from the continuous deposition of organic matter through the water column (de Haas et al., 2002; Jahnke et al., 2005). The intensity of this process decreases in line with the increasing depth of the system, and the influence of the primary production and the continental supplies on the deposition of the particulate organic matter is less (Friedl et al., 1998; Burdige, 2007; Al Azhar et al., 2017). Ferrón et al. (2009) quantified the release from the sediment of DIC related to the processes of oxidation of organic matter in the coastal zone (depth < 50 m) of the Gulf of Cádiz, between the Guadalquivir and the Bay of Cádiz. These authors found a mean benthic flux of 27 ± 8 mmol C m⁻² d⁻¹ for stations with a mean depth of 23 m. Considering a well-mixed water column, a pH = 8, in the conditions of mean temperature and salinity in the Gulf of Cádiz (18.8 °C and 36.19, respectively) and using the K1 and K2 acidity constants proposed by Lueker et al. (2000) in the total pH scale. This flux of DIC is equivalent to a CO_2 flux of 198 ± 80 µmol C m⁻² d⁻¹, which would produce an increase of pCO₂ of 0.25 ± 0.10 µatm d⁻¹.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

340

345

350

355

360

365

Additionally, in the coastal zone (depth between 50 and 100 m) of the Trafalgar section, an almost permanent upwelling system is located (Prieto et al., 1999; Vargas-Yáñez et al., 2002); this system could affect the pCO₂ values in this part of the Gulf of Cádiz.

There are other upwelling systems located more to the west of the zone studied. One of these is situated between the cape of Santa María and the river Guadalquivir and is more sensitive to meteorological forcing, and there is another at Cape San Vicente that is almost permanently active (Criado-Aldeanueva et al., 2006). This input of colder waters, with greater loading of nutrients and higher concentrations of CO₂ (e.g. Liu et al., 2010; Xue et al., 2015; González-Dávila et al., 2017) can affect the distributions of pCO₂ found in the Gulf of Cádiz.

The progressive increase of T and pCO₂ with increasing depth of the system measured below 100 - 200 m (Fig. 5), it is associated with the presence of a branch of the Azores Current that introduces warmer waters in the central part of the Gulf of Cádiz (Gould, 1985; Käse et al., 1985; Johnson and Stevens, 2000). The influence of warmer surface currents and their influence on the variability of pCO₂ has been observed in other studies, such as that on the influence of the Gulf Stream in the south-eastern continental shelf of the United States (Wang et al., 2005; Jiang et al., 2008), and that on the Kuroshio Current in the northern East China Sea (Shim et al., 2007).

Ribas-Ribas et al. (2011) also found a decrease of pCO₂ towards the deep zones (down to \approx 100 m) on the north-eastern shelf of the Gulf of Cádiz. In general, an oversaturation of CO₂ with respect to the atmosphere in shallower zones and the subsequent undersaturation in distal waters, has also been described in other systems such as, for example, in the southern part of the Yellow Sea (Qu et al., 2014), in the southwestern part of the Atlantic Ocean (Arruda et al., 2015), in the North Sea (Clargo et al., 2015), and on the continental shelf of Maranhense (Lefèvre et al., 2017).

4.2. Control factors affecting pCO₂

In addition to the influence of temperature, the spatiotemporal distribution of pCO₂ in surface seawater is affected by the biological utilization of CO₂, the vertical and lateral transport, the sea-air exchange of CO₂ and terrestrial inputs (e.g. Arruda et al., 2015; Ito et al., 2016; Xue et al., 2016).

With the object of investigating the influence of the biological activity on the variations of pCO₂, Fig. 6 shows the dependence between the mean values of pCO₂ at the fixed stations, and the temperature, pH, AOU and the concentration of chlorophyll-a (n = 126). The thermal effect on pCO₂ is more intense when the discrete database (pCO₂ = 297 + 5.7 T, r^2 = 0.48; p < 0.0001) is considered in comparison to the effect obtained using the whole database. The variation of pCO₂ with pH (pCO₂ = 1710 - 162.8 pH, r^2 = 0.34; p < 0.0001), AOU (pCO₂ = 410 + 1.1 AOU, r^2 = 0.21; p < 0.0001), and chlorophyll-a (pCO₂ = 413 - 20.8 [Chl-a], r^2 = 0.14; p < 0.0001) show the influence of the processes of photosynthesis and respiration on the variations of pCO₂ found. For the Gulf of Cádiz, Huertas et al. (2005) found a linear relationship between pCO₂ and chlorophyll-a with a slope similar to that obtained in this study (pCO₂ = 274 - 19.6 [Chl-a], r^2 = 0.32; p < 0.0001; n = 28). Other authors have also described the interrelationships existing between pCO₂ and chlorophyll-a in other coastal areas (Borges and Frankignoulle, 1999; Tseng et al., 2011; Zhang et al., 2012; Qin et al., 2014; Litt et al., 2018). Inverse relationships between pCO₂ and dissolved oxygen as a consequence of the balance between the processes of photosynthesis and respiration have been found in other studies (Zhai et al., 2009; de la Paz et al., 2010; Xue et al., 2012; Xue et al., 2016).

In order to identify the overall controls of temperature and biological effects, the T/B ratio has been calculated (Takahashi et al., 2002). A T/B ratio greater than 1 implies the dominance of temperature effects over biological processes, on the pCO₂ dynamics. Strictly speaking, the term that picks up the biological effect in the model of Takahashi et al. (2002), encompasses

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

375

380

385

390

395

400

405

410

all those processes that are not thermal, that influence the variations of pCO₂, including the biological utilization of CO₂, continental inputs and the existence of upwellings (Xue et al., 2012; Qu et al., 2014). This method was originally designed for open oceanic systems, but it has been widely used by other authors in coastal areas (e.g. Schiettecatte et al., 2007; Ribas-Ribas et al., 2011; Qu et al., 2014; Burgos et al., 2018).

In this study, the global T/B ratio is 1.15, which indicates that temperature is an important factor controlling intra-annual variation of pCO₂. This value is similar to that determined by Ribas-Ribas et al. (2011), in the northeast zone of the shelf of the Gulf of Cádiz, with a ratio of 1.3. De la Paz et al. (2009) propose a T/B ratio of 2.4 in the Strait of Gibraltar, indicating very significant thermal control in this relatively deep zone situated to the east of the Gulf of Cádiz.

Figure 7 presents the values of the T/B ratio grouped in different bottom-depth intervals of the water column in the system. The variations of ΔpCO_2 bio and ΔpCO_2 temp found have been superimposed. In the coastal zone (depth < 50 m), the T/B ratio is below 1 (0.9), and increases to values of 1.3 in the central zone of the Gulf of Cádiz, at depths ranging from 100 to 400 m. However, in the deepest zone (depth > 600 m), a progressive decrease to values of 1.1 is found. This variation of the T/B ratio is largely caused by the variations of ΔpCO_2 bio, with high values close to the coast (120.2 μ atm), low values in the central zone (75 μ atm) and an increase in the deepest zone (90.7 μ atm). Qu et al. (2014) have described the variation on the values of the T/B ratio with the distance to the coast, between 0.4 - 0.6 in the nearshore area (depth < 50 m) to more than 1 (up to 2.4) in the offshore sand (depth > 50 m), in the southern Yellow Sea.

Figure 8 shows the dependence of ΔpCO_2 temp with temperature ($r^2 = 0.40$, p < 0.01) and of ΔpCO_2 bio with chlorophyll-a ($r^2 = 0.42$, p < 0.01) for the fixed stations; these values confirm the importance of both the thermal and biological processes on the variation of pCO_2 . The existence of a certain linear correlation between the mean values of chlorophyll-a and the concentrations of nitrate ($r^2 = 0.66$, p < 0.01) and phosphate ($r^2 = 0.63$, p < 0.01) has also been observed. The increase of the T/B ratio and the decrease of ΔpCO_2 bio from the coastal zone to the central part of the Gulf of Cádiz are associated with the variations of the chlorophyll-a and nutrient concentrations that diminish exponentially with the depth of the system. Thus, the mean concentrations of chlorophyll-a, nitrate and phosphate in the distal zone are 66.3, 81.9 and 44.8 % less than the concentrations found close to the coast.

However, the concentrations of chlorophyll-a and nutrients are relatively constant in waters with bottom-depth to 200 m, and do not explain the decrease of the T/B ratio and the increase of ΔpCO_2 bio in waters with bottom-depth higher than 400 m. These variations have been associated with the change in the origin of the surface water masses. Thus, in the central zone of the Gulf of Cádiz, the origin of the surface waters is a branch of the larger-scale Portuguese-Canary eastern boundary current that circulates around a cyclonic eddy off Cape San Vicente and veers eastward into the Gulf of Cádiz (García-Lafuente et al., 2006). While the deepest zone is under the influence of a branch of the Azores current, which in addition to being a warmer stream that could lead to an increase in primary production, it is the northern border of the subtropical gyre (Klein and Siedler, 1989), thus favour the accumulation of CO_2 in this area as convergence zone (Ríos et al., 2005).

The T/B ratios have also been calculated for the different transects at right angles to the coast that have been cruised for sampling in the study zone, as shown in Fig. 9. It can be appreciated that the T/B ratio increases with the distance from the coast on the three transects, and that the temperature generally has a greater influence on the distribution of pCO₂ than the non-thermal effects. The T/B ratio varies to the east, with values between 1.0 in the zone of the Guadalquivir and 1.4 in Sancti Petri, and an intermediate value of 1.2 in the Trafalgar zone. These variations are related to changes in the biological activity and the presence of coastal upwellings. The Guadalquivir zone receives substantial continental supplies that lead to high relative concentrations of chlorophyll-a and nutrients; these give rise to high values of ΔpCO_2 bio. In particular, coastal waters

Discussion started: 15 February 2019

© Author(s) 2019. CC BY 4.0 License.

415

425

430

435

440

445

near the mouth of the Guadalquivir River present the highest primary production of all waters within the Gulf of Cádiz (Navarro and Ruiz, 2006). The coastal zone close to Cape Trafalgar has been characterized as a region with high autotrophic productivity and biomass associated mainly with the nutrients input due to upwelling waters (e.g. Echevarría et al., 2002; García et al., 2002). The presence of these emerged water masses could be related to the relatively low values of ΔpCO_2 temp found in this zone. In fact, the mean temperature in this section is 18.4 ± 2.3 °C, about 0.5 °C lower than in the other two zones. The Sancti Petri zone is the one that receives a smaller supply of nutrients, and presents the lowest concentrations of chlorophyll-a in this study. The high values of ΔpCO_2 temp in this part of the Gulf of Cádiz are associated with a higher mean temperature (19.0 °C) and a wider range of variation (6.8 °C).

420 4.3. Ocean-atmosphere CO2 exchange

In the Gulf of Cádiz, the flux of CO₂ presents a range of variation from -5.6 to 14.2 mmol m⁻² d⁻¹. These values are within the ranges observed by other authors in continental shelf zones of the North Atlantic (Table 5). As can be appreciated in Fig. 10, the fluxes of CO₂ presented seasonal and spatial variations during the period studied. The Gulf of Cádiz acts as a source of CO₂ to the atmosphere during the months of summer (ST2, ST6) and autumn (ST3, ST7), and as a sink in spring (ST1, ST5) and winter (ST4, ST8). Previous studies conducted in the Gulf of Cádiz are consistent with the behaviour found in this study (González-Dávila et al., 2003; Aït-Ameur and Goyet, 2006; Ribas-Ribas et al., 2011).

As has been observed with pCO₂, temperature is one of the principal factors that control the fluxes of CO₂. In fact, for each cruise, a linear and positive relationship has been found between the mean values of the CO₂ fluxes and T ($r^2 = 0.72$, p < 0.01) (Fig. 11). In parallel, there is a linear and negative relationship between the mean values of the CO₂ fluxes and the concentration of chlorophyll-a at the discrete stations sampled ($r^2 = 0.74$, p < 0.01) (Fig. 11), as a consequence of the biological utilisation of the CO₂ (Qin et al., 2014). These relationships have also been found in various studies carried out in zones similar to the area studied (Zhang et al., 2010; Arnone et al., 2017; Carvalho et al., 2017).

The fluxes of CO_2 in the Gulf of Cádiz tend to decrease with the distance from the coast (Fig.10). The coastal zone (< 50 m) presents a mean CO_2 flux of 0.8 ± 1.8 mmol m⁻² d⁻¹, that reduces progressively to reach a value of -0.3 ± 1.6 mmol m⁻² d⁻¹ in open waters with bottom-depth higher than 600 m. This dependence of CO_2 fluxes with distance from the coast has also been described in other systems, such as in the South Atlantic Bight of the United States (Jiang et al., 2008), in the south-western part of the Atlantic Ocean (Arruda et al., 2015), in the Patagonian Sea (Kahl et al., 2017) and on the continental shelf of Maranhense (Lefèvre et al., 2017). This dependence is the consequence of the decrease of influence of the continental supplies on the CO_2 fluxes as one moves towards the open sea. Ribas-Ribas et al. (2011) also found that in the Gulf of Cádiz the CO_2 fluxes vary with the distance from the coast; the zone close to the estuary of the Guadalquivir and the Bay of Cádiz acts as a source (1.39 mmol m⁻² d⁻¹) and the zone comprising the rest of the shelf acts as a sink (-0.44 mmol m⁻² d⁻¹).

In addition, on both GD and SP transects a decrease of the CO_2 flux is found towards the open ocean, due to the continental inputs associated with the estuary of the Guadalquivir and with the Bay of Cádiz, respectively. On the TF transect, in contrast, it was observed that the zone close to the coast acts as a sink of CO_2 (-0.4 \pm 1.2 mmol m⁻² d⁻¹), and the deeper zone is a weak source of CO_2 to the atmosphere (0.3 \pm 1.3 mmol m⁻² d⁻¹). This finding can be explained by the presence of an upwelling close to the coast that is likely to be causing an increase of the production (e.g. Hales et al., 2005; Borges et al., 2005). With reference to this, on the TF transect there are significant differences between the mean surface concentrations of chlorophyll-a and nitrate in the coastal zone (0.63 \pm 0.43 μ g L⁻¹ and 1.09 \pm 0.77 μ mol L⁻¹, respectively) and in deeper zones (0.17 \pm 0.12 μ g L⁻¹ and 0.32 \pm 0.33 μ mol L⁻¹, respectively).

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

460

465

470

475

480

The Gulf of Cádiz, during the period of this sampling, acted as a sink of CO₂, with a mean rate of -0.18 ± 1.32 mmol m⁻² d⁻¹, that would give rise to an annual flux of -0.07 mol C m⁻² yr⁻¹. The findings of previous studies carried out in the Gulf of Cádiz coincide with the behaviour observed in this study (Santana-Casiano et al., 2002; González-Dávila et al., 2003; Huertas et al., 2006; de la Paz et al., 2009; Ribas-Ribas et al., 2011), with the exception of the study by Aït-Ameur and Goyet (2006) in which it was estimated that the Gulf of Cádiz acts as a source of CO₂ to the atmosphere, although that study only corresponds to the summer season.

5. Conclusions

The mean value of pCO₂ in the eastern part of the Gulf of Cádiz found in this study (398.9 \pm 15.5 μ atm) indicates that it is undersaturated in CO₂ with respect to the atmosphere (402.1 \pm 3.9 μ atm). The spatiotemporal variation of pCO₂ found responds to the influence of different factors that usually affect its distribution in the littoral oceans. In global terms, when the mean values of the 8 cruises are considered, temperature (pCO₂ = 302.0 + 5.16 T, r² = 0.71, p < 0.01) and biological activity (pCO₂ = 425.0 - 59.15 [Chl-a], r² = 0.76, p < 0.01) are the two principal factors that explain the temporal variability of pCO₂. Over and above these general tendencies, there are spatial variations associated fundamentally with two other processes. Firstly, the effect of the continental supplies is that, in the coastal zone, principally the area close to the mouth of the Guadalquivir, there is a wider dispersion of the values of pCO₂; it is in this area where the lowest and highest values have been observed in the discrete measurements. In this same coastal zone the highest mean values of pCO₂ were found - values that diminish progressively in line with increasing distance from the coast, out as far as an approximate depth of some 400 m. Secondly, there is a relative increase of the temperature and pCO₂ in the zone furthest from the coast (depth > 400 m) that is the consequence of a change in the origin of the surface water, with the arrival of a warm branch of the Azores current.

The T/B ratio allows the adequately identification of the factors that control the variability of pCO₂ in the Gulf of Cádiz. Its mean value (1.15) suggests that the distribution is principally controlled by the temperature. A decrease of the ratio has been found, related to the existence of non-thermal processes, mainly taking place close to the coast (at depths of 100 m or less). In the proximity of the Guadalquivir estuary the ratio takes a value of 0.93 due to the continental inputs of C and nutrients, and in the zone around the coastal upwelling off Cape Trafalgar the ratio is 1.09. Furthermore, the actual characteristics of the surface water mass that originates under the influence of a branch of the Azores current also produce a decrease of the T/B ratio in the deeper zone studied (1.05 for depths > 600 m). In contrast, the highest T/B ratio values have been found in the Sancti Petri section, where values of up to 1.54 are obtained for depths greater than 100 m.

The Gulf of Cádiz acts as a sink of CO_2 , with a mean capacity of capture for the period sampled of 14.9 Gg year⁻¹. The CO_2 fluxes present seasonal variation: these waters act as a source of CO_2 to the atmosphere in summer and autumn and as a sink in winter and spring. The spatiotemporal variability of CO_2 is very similar to that found for the distribution of pCO_2 , with larger fluxes close to coast. Based on the information available in the zone, there seems to have been a decrease in the capacity for CO_2 capture in the zone in recent decades.

Author contributions

D.J.-L. wrote the manuscript with contributions from A.S., T.O. and J.F. D.J.-L. and J.F. processed the experimental data. D.J.-L., T.O. and J.F. conceived the original idea. All authors contributed to the collecting the data.

485 Competing interests

The authors declare that they have no conflict of interest.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

Acknowledgments

D. Jiménez-López was financed by the University of Cádiz with a FPI fellowship (FPI-UCA) and A. Sierra was financed by the Spanish Ministry of Education with a FPU fellowship (FPU2014-04048). The authors gratefully acknowledge the Spanish Institute of Oceanography (IEO) for giving us the opportunity to participate in the STOCA cruises. We thank the crews of the R/V's Angeles Alvariño and Ramon Margalef for their assistance during field work. We are also grateful to Drs. X. A. Padin and F. F. Pérez (IIM-CSIC) for collaboration on the calibration of the sub-standards of CO₂. This work was supported by the Spanish CICYT (Spanish Program for Science and Technology) under contract CTM2014-59244-C3.

495 References

- Aït-Ameur, N. and Goyet, C.: Distribution and transport of natural and anthropogenic CO₂ in the Gulf of Cádiz, Deep. Res. Part II Top. Stud. Oceanogr., 53, 1329–1343, https://doi.org/10.1016/j.dsr2.2006.04.003, 2006.
- Alvarez, I., Ospina-Alvarez, N., Pazos, Y., deCastro, M., Bernardez, P., Campos, M. J., Gomez-Gesteira, J. L., Alvarez-Ossorio, M. T., Varela, M., Gomez-Gesteira, M., and Prego, R.: A winter upwelling event in the Northern Galician Rias: Frequency and oceanographic implications, Estuar. Coast. Shelf Sci., 82, 573–582, https://doi.org/10.1016/j.ecss.2009.02.023, 2009.
- Al Azhar, M., Lachkar, Z., Lévy, M., Smith, S.: Oxygen minimum zone contrasts between the Arabian Sea and the Bay of Bengal implied by differences in remineralization depth, Geophys. Res. Lett., 44, 106–114, https://doi.org/10.1002/2017GL075157, 2017.
- Arístegui, J., Barton, E. D., Álvarez-Salgado, X.A., Santos, A.M.P., Figueiras, F.G., Kifani, S., Hernández-León, S., Mason, E., Machú, E., and Demarcq, H.: Sub-regional ecosystem variability in the Canary Current upwelling, Prog. Oceanogr, 83, 33–48, https://doi.org/10.1016/j.pocean.2009.07.031, 2009.
 - Armi, L., and Farmer, D. M.: The flow of Mediterranean water through the Strait of Gibraltar, Prog. Oceanogr., 21, 1–105, https://doi.org/10.1016/0079-6611(88)90055-9, 1988.
- Arnone, V., González-Dávila, M., and Santana-Casiano, J. M.: CO₂ fluxes in the South African coastal region, Mar. Chem., 195, 41–49, https://doi.org/10.1016/j.marchem.2017.07.008, 2017.
 - Arruda, R., Calil, P. H. R., Bianchi, A. A., Doney, S. C., Gruber, N., Lima, I., and Turi, G.: Air-sea CO₂ fluxes and the controls on ocean surface pCO₂ seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: A modeling study, Biogeosciences, 12, 5793–5809, https://doi.org/10.5194/bg-12-5793-2015, 2015.
- Astor, Y. M., Scranton, M. I., Muller-Karger, F., Bohrer, R., and Garcia, J.: CO₂ variability at the CARIACO tropical coastal upwelling time series station, Mar. Chem., 97, 245–261, https://doi.org/10.1016/j.marchem.2005.04.001, 2005.
 - Astor, Y. M., Lorenzoni, L., Guzman, L., Fuentes, G., Muller-Karger, F., Varela, R., Scranton, M. I., Taylor, G. T., and Thunell, R.: Distribution and variability of the dissolved inorganic carbon system in the Cariaco Basin, Venezuela, Mar. Chem., 195, 15–26, https://doi.org/10.1016/j.marchem.2017.08.004, 2017.
- Baringer, M. O. N., and Price, J. F.: A review of the physical oceanography of the Mediterranean outflow, Mar. Geol., 155, 63–82, https://doi.org/10.1016/S0025-3227(98)00141-8, 1999.
 - Bates, N. R., Merlivat, L., Beaumont, L., and Pequignet, A. C.: Intercomparison of shipboard and moored CARIOCA buoy seawater fCO₂ measurements in the Sargasso Sea, Mar. Chem., 72, 239–255, https://doi.org/10.1016/S0304-4203(00)00084-0, 2000.
- Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

535

545

- Bellanco, M. J., and Sánchez-Leal, R. F.: Spatial distribution and intra-annual variability of water masses on the Eastern Gulf of Cádiz seabed, Cont. Shelf Res., 128, 26–35, https://doi.org/10.1016/j.csr.2016.09.001, 2016.
- Borges, A. V., and Frankignoulle, M.: Daily and seasonal variations of the partial pressure of CO₂ in surface seawater along

 Belgian and southern Dutch coastal areas, J. Mar. Syst., 19, 251–266, https://doi.org/10.1016/S0924-7963(98)00093-1,
 1999.
 - Borges, A. V., and Frankignoulle, M.: Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast, Global Biogeochem. Cycles, 16, 1020, https://doi.org/10.1029/2000GB001385, 2002.
 - Borges, A. V., and Frankignoulle, M.: Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas, J. Geophys. Res., 108, 3140, https://doi.org/10.1029/2000JC000571, 2003.
 - Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO₂ in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett., 32, L14601, https://doi.org/10.1029/2005GL023053, 2005.
 - Borges, A. V., Schiettecatte, L. S., Abril, G., Delille, B., and Gazeau, F.: Carbon dioxide in European coastal waters, Estuar. Coast. Shelf Sci., 70, 375–387, https://doi.org/10.1016/j.ecss.2006.05.046, 2006.
- Bozec, Y., Thomas, H., Elkalay, K., and De Baar, H. J. W.: The continental shelf pump for CO₂ in the North Sea-evidence from summer observation, Mar. Chem, 93, 131–147, https://doi.org/10.1016/j.marchem.2004.07.006, 2005.
 - Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
 - Burgos, M., Ortega, T., and Forja, J.: Carbon Dioxide and Methane Dynamics in Three Coastal Systems of Cádiz Bay (SW Spain), Estuaries and Coasts, 41, 1069–1088, https://doi.org/10.1007/s12237-017-0330-2, 2018.
 - Cai, W. J., Wang, Z. A., and Wang, Y.: The role of marsh-dominated heterotrophic continental margins in transport of CO₂ between the atmosphere, the land-sea interface and the ocean, Geophys. Res. Lett., 30, 1–4, https://doi.org/10.1029/2003GL017633, 2003.
 - Cai, W. J., Dai, M., and Wang, Y.: Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis, Geophys. Res. Lett., 33, 2–5, https://doi.org/10.1029/2006GL026219, 2006.
 - Carvalho, A. C. O., Marins, R. V., Dias, F. J. S., Rezende, C. E., Lefèvre, N., Cavalcante, M. S., and Eschrique, S. A.: Air-sea CO₂ fluxes for the Brazilian northeast continental shelf in a climatic transition region, J. Mar. Syst., 173, 70–80, https://doi.org/10.1016/j.jmarsys.2017.04.009, 2017.
- Chen, C. T. A., and Borges, A. V.: Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO₂, Deep. Res. Part II Top. Stud. Oceanogr., 56, 578–590, https://doi.org/10.1016/j.dsr2.2009.01.001, 2009.
 - Chen, C. T. A., Huang, T. H., Chen, Y. C., Bai, Y., He, X., and Kang, Y.: Air-sea exchanges of coin the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
- Clargo, N. M., Salt, L. A., Thomas, H., and de Baar, H. J. W.: Rapid increase of observed DIC and pCO₂ in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes, Mar. Chem., 177, 566–581, https://doi.org/10.1016/j.marchem.2015.08.010, 2015.
 - Cohen, J. E., Small, C., Mellinger, A., Gallup, J., and Sachs, J.: Estimates of coastal populations, Science, 278, 1209–1213, https://doi.org/10.1126/science.278.5341.1209c, 1997.
- Criado-Aldeanueva, F., García-Lafuente, J., Vargas, J. M., Del Río, J., Vázquez, A., Reul, A., and Sánchez, A.: Distribution and circulation of water masses in the Gulf of Cádiz from in situ observations, Deep. Res. Part II Top. Stud. Oceanogr, 53, 1144–1160, https://doi.org/10.1016/j.dsr2.2006.04.012, 2006.
 - Dafner, E. V., González-Dávila, M., Santana-Casiano, J. M., and Sempere, R.: Total organic and inorganic carbon exchange through the Strait of Gibraltar in September 1997, Deep-Sea Res. Part I Oceanogr. Res. Pap., 48, 1217–1235,

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

575

580

585

- https://doi.org/10.1016/S0967-0637(00)00064-9, 2001.
- DeGrandpre, M. D., Olbu, G. J., Beatty, C. M., and Hammar, T. R.: Air-sea CO₂ fluxes on the US Middle Atlantic Bight, Deep-Sea Res. Part II Top. Stud. Oceanogr., 49, 4355–4367, https://doi.org/10.1016/S0967-0645(02)00122-4, 2002.
 - de Haas, H., vanWeering, T. C. E., and de Stieger, H.: Organic carbon in shelf seas: sinks or sources, processes and products, Cont. Shelf Res., 22, 691–717, https://doi.org/10.1016/S0278-4343(01)00093-0, 2002.
 - de la Paz, M., Gómez-Parra, A., and Forja, J.: Inorganic carbon dynamic and air-water CO₂ exchange in the Guadalquivir Estuary (SW Iberian Península), J. Mar. Syst., 68, 265–277, https://doi.org/10.1016/j.jmarsys.2006.11.011, 2007.
 - de la Paz, M., Debelius, B., Macías, D., Vázquez, A., Gómez-Parra, A., and Forja, J. M.: Tidal-induced inorganic carbon dynamics in the Strait of Gibraltar, Cont. Shelf Res., 28, 1827–1837, https://doi.org/10.1016/j.csr.2008.04.012, 2008a.
 - de la Paz, M., Gómez-Parra, A., and Forja, J.: Tidal-to-seasonal variability in the parameters of the carbonate system in a shallow tidal creek influenced by anthropogenic inputs, Rio San Pedro (SW Iberian Península), Cont. Shelf Res., 28, 1394–1404, https://doi.org/10.1016/j.csr.2008.04.002, 2008b.
 - de la Paz, M., Gómez-Parra, A., and Forja, J. M.: Seasonal variability of surface fCO₂ in the Strait of Gibraltar, Aquat. Sci., 71, 55–64, https://doi.org/10.1007/s00027-008-8060-y, 2009.
 - de la Paz, M., Padín, X. A., Ríos, A.F., and Pérez, F. F.: Surface fCO₂ variability in the Loire plume and adjacent shelf waters: High spatio-temporal resolution study using ships of opportunity, Mar. Chem., 118, 108–118, https://doi.org/10.1016/j.marchem.2009.11.004, 2010.
 - DOE.: in: Guide to best practices for ocean CO₂ measurement, edited by: Dickson, A. G. Sabine, C. L. and Christian, J.R., Sidney, British Columbia, North Pacific Marine Science Organization, 191 pp., 2007.
 - Echevarría, F., García-Lafuente, J., Bruno, M., Gorsky, G., Goutx, M., González, N., García, C. M., Gómez, F., Vargas, J. M., Picheral, M., Striby, L., Varela, M., Alonso, J. J., Reul, A., Cózar, A., Prieto, L., Sarhan, T., Plaza, F., and Jiménez-González, F.: Physical-biological coupling in the Strait of Gibraltar, Deep Sea Res. Part II Top. Stud. Oceanogr., 49, 4115–4130, https://doi.org/10.1016/S0967-0645 (02)00145-5, 2002.
 - Feely, R. A., Boutin, J., Cosca, C. E., Dandonneau, Y., Etcheto, J., Inoue, H. Y., Ishii, M., Quéré, C. L., Mackey, D. J., McPhaden, M., Metzl, N., Poisson, A., Wanninkhof, R.: Seasonal and interannual variability of CO₂ in the equatorial Pacific, Deep Sea Res. II Top. Stud. Oceanogr., 49, 2443–2469, https://doi.org/10.1016/S0967-0645(02)00044-9, 2002.
- Fennel, K., and Wilkin, J.: Quantifying biological carbon export for the northwest North Atlantic continental shelves, Geophys. Res. Lett., 36, 2–5, https://doi.org/10.1029/2009GL039818, 2009.
 - Ferrón, S., Alonso-Pérez, F., Anfuso, E., Murillo, F. J., Ortega, T., Castro, C. G., Forja, J. M.: Benthic nutrient recycling on the northeastern shelf of the Gulf of Cádiz (SW Iberian Península), Mar. Ecol. Prog. Ser., 390, 79–95, https://doi.org/10.3354/meps08199, 2009.
- Fiúza, A. F., de Macedo, M., and Guerreiro, M.: Climatological space and time variation of the Portuguese coastal upwelling, Oceanol. Acta, 5, 31–40, 1982.
 - Frankignoulle, M., and Borges, A. V.: European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cycles. 15, 569–576, https://doi.org/10.1029/2000GB001307, 2001.
- Friederich, G. E., Walz, P. M., Burczynski, M. G., and Chavez, F. P.: Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño-La Niña event, Prog. Oceanogr., 54, 185–203, https://doi.org/10.1016/S0079-6611(02)00049-6, 2002.
 - Friederich, G. E., Ledesma, J., Ulloa, O., and Chavez, F. P.: Air-sea carbon dioxide fluxes in the coastal southeastern tropical Pacific, Prog. Oceanogr., 79, 156–166, https://doi.org/10.1016/j.pocean.2008.10.001, 2008.
- Friedl, G., Dinkel, C., and Wehrli, B.: Benthic fluxes of nutrients in the northwestern Black Sea, Mar. Chem., 62, 77–88, https://doi.org/10.1016/S0304-4203(98)00029-2, 1998.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

- Gago, J., Gilcoto, M., Pérez, F. F., and Ríos, A. F.: Short-term variability of fCO₂ in seawater and air-sea CO₂ fluxes in a coastal upwelling system (Ría de Vigo, NW Spain), Mar. Chem., 80, 247–264. https://doi.org/10.1016/S0304-4203(02)00117-2, 2003.
- García, C. M., Prieto, L., Vargas, M., Echevarría, F., García-Lafuente, J., Ruiz, J., and Rubín, J. P.: Hydrodynamics and the spatial distribution of plankton and TEP in the Gulf of Cádiz (SW Iberian Península), J. Plankton Res., 24, 817–833, https://doi.org/10.1093/plankt/24.8.817, 2002.
 - Garcia-Lafuente, J., Delgado, J., Criado-Aldeanueva, F., Bruno, M., del Rio, J., and Vargas, J. M.: Water mass circulation on the continental shelf of the Gulf of Cádiz, Deep Sea Res. Part II Top. Stud. Oceanogr., 53, 1182–1197, https://doi.org/10.1016/j.dsr2.2006.04.011, 2006.
- 620 García Lafuente, J., and Ruiz, J.: The Gulf of Cádiz pelagic ecosystem: A review, Prog. Oceanogr., 74, 228–251, https://doi.org/10.1016/j.pocean.2007.04.001, 2007.
 - González-Dávila, M., Santana-Casiano, J. M., and Dafner, E. V.: Winter mesoscale variations of carbonate system parameters and estimates of CO₂ fluxes in the Gulf of Cádiz, northeast Atlantic Ocean (February 1998), J. Geophys. Res., 108, 1–11, https://doi.org/10.1029/2001JC001243, 2003.
- González-Dávila, M., Santana-Casiano, J.M., and Ucha, I.R.: Seasonal variability of fCO₂ in the Angola-Benguela region, Prog. Oceanogr., 83, 124–133, https://doi.org/10.1016/j.pocean.2009.07.033, 2009.
 - González-Dávila, M., Santana Casiano, J. M., and Machín, F.: Changes in the partial pressure of carbon dioxide in the Mauritanian-Cape Verde upwelling region between 2005 and 2012, Biogeosciences, 14, 3859–3871, https://doi.org/10.5194/bg-14-3859-2017, 2017.
- González-García, C., Forja, J., González-Cabrera, M. C., Jiménez, M. P., and Lubián, L. M.: Annual variations of total and fractionated chlorophyll and phytoplankton groups in the Gulf of Cádiz, Sci. Total Environ., 613, 1551–1565, https://doi.org/10.1016/j.scitotenv.2017.08.292, 2018.
 - Gould, W. J.: Physical oceanography of the Azores Front, Prog. Oceanogr., 14, 167–190, https://doi.org/10.1016/0079-6611(85)90010-2, 1985.
- 635 Grasshoff, K., Erhardt, M., and Kremiling, K.: Methods of Seawater Analysis, Verlag Chemie, 419 pp., 1983.
 - Gypens, N., Lacroix, G., Lancelot, C., and Borges, A. V.: Seasonal and inter-annual variability of air–sea CO₂ fluxes and seawater carbonate chemistry in the Southern North Sea, Prog. Oceanogr., 88, 59–77, https://doi.org/10.1016/j.pocean.2010.11.004, 2011.
 - Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO₂ uptake by a coastal upwelling system, Global Biogeochem. Cycles, 19, 1–11, https://doi.org/10.1029/2004GB002295, 2005.
 - Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill, P.: Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, L16611, https://doi.org/10.1029/2006GL026817, 2006.
- Hofmann, E. E., Cahill, B., Fennel, K., Friedrichs, M. A. M., Hyde, K., Lee, C., Mannino, A., Najjar, R. G., O'Reilly, J. E.,
 Wilkin, J., and Xue, J.: Modeling the Dynamics of Continental Shelf Carbon, Annu. Rev. Mar. Sci., 3, 93–122, http://dx.doi.org/ 10.1146/annurev-marine-120709-142740, 2011.
 - Huang, W. J., Cai, W. J., Wang, Y., Lohrenz, S. E., and Murrell, M. C.: The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO₂ flux, J. Geophys. Res. Ocean., 120, 1429–1445, https://doi.org/10.1002/2014JC010498, 2015.
- Huertas, E., Navarro, G., Rodríguez-Gálvez, S., and Prieto, L.: The influence of phytoplankton biomass on the spatial distribution of carbon dioxide in surface sea water of a coastal area of the Gulf of Cádiz (southwestern Spain), Can. J. Bot., 83, 929–940, https://doi.org/10.1139/b05-082, 2005.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

655

- Huertas, I. E., Navarro, G., Rodríguez-Gálvez, S., and Lubián, L. M.: Temporal patterns of carbon dioxide in relation to hydrological conditions and primary production in the northeastern shelf of the Gulf of Cádiz (SW Spain), Deep. Res. Part II Top. Stud. Oceanogr., 53, 1344–1362, https://doi.org/10.1016/j.dsr2.2006.03.010, 2006.
- Ito, R. G., Garcia, C. A. E., and Tavano, V. M.: Net sea-air CO₂ fluxes and modelled pCO₂ in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011, Cont. Shelf Res., 119, 68–84, https://doi.org/10.1016/j.csr.2016.03.013, 2016.
- Jahnke, R., Richards, M., Nelson, J., Robertson, C., Rao, A., and Jahnke, D.: Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments, Cont. Shelf Res., 25, 1433–1452, https://doi.org/10.1016/j.csr.2005.04.002, 2005.
 - Jiang, L. Q., Cai, W. J., Wanninkhof, R., Wang, Y., and Lüger, H.: Air-sea CO₂ fluxes on the U.S. South Atlantic Bight: Spatial and seasonal variability, J. Geophys. Res., 113, C07019, https://doi.org/10.1029/2007JC004366, 2008.
- Jiang, L. Q., Cai, W. J., Wang, Y., and Bauer, J. E.: Influence of terrestrial inputs on continental shelf carbon dioxide, Biogeosciences, 10, 839–849, https://doi.org/10.5194/bg-10-839-2013, 2013.
 - Johnson, J., and Stevens, I.: A fine resolution model of the eastern North Atlantic between the Azores, the Canary Islands and the Gibraltar Strait, Deep. Res. Part I Oceanogr. Res. Pap., 47, 875–899, https://doi.org/10.1016/S0967-0637(99)00073-4.2000.
- Kahl, L. C., Bianchi, A. A., Osiroff, A. P., Pino, D. R., and Piola, A. R.: Distribution of sea-air CO₂ fluxes in the Patagonian Sea: seasonal, biological and thermal effects, Cont. Shelf Res., 143, 18–28, https://doi.org/10.1016/j.csr.2017.05.011, 2017.
 - Käse, R. H., Zenk, W., Sanford, T. B., and Hiller, W.: Currents, Fronts and Eddy Fluxes in the Canary Basin, Progr. Oceanogr., 14, 231–257, https://doi.org/10.1016/0079-6611(85)90013-8, 1985.
- Klein, B., and Siedler, G.: On the origin of the Azores Current, J. Geophys. Res., 94, 6159–6168, https://doi.org/10.1029/JC094iC05p06159, 1989.
 - Körtzinger, A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L., and Duinker, J. C.: At-sea intercomparison of two newly designed underway pCO₂ systems encouraging results, Mar. Chem., 52, 133–145, https://doi.org/10.1016/0304-4203(95)00083-6, 1996.
- Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.: Evaluation of sinks and sources of CO₂ in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves, Geophys. Res. Lett., 37, L15607, https://doi.org/10.1029/2010GL043691, 2010.
 - Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global budget of the CO₂ exchange at the air-water interface in continental shelf seas, Global Biogeochem. Cycles, 28, 1199–1214, https://doi.org/10.1002/2014GB004832, 2014.
- 685 Laruelle, G. G., Landschützer, P., Gruber, N., Ti, J. L., Delille, B., and Regnier, P.: 2017. Global high-resolution monthly pCO₂ climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017.
 - Lefèvre, N., da Silva Dias, F. J., de Torres, A. R., Noriega, C., Araujo, M., de Castro, A. C. L., Rocha, C., Jiang, S., and Ibánhez, J. S. P.: A source of CO₂ to the atmosphere throughout the year in the Maranhense continental shelf (2°30'S, Brazil), Cont. Shelf Res., 141, 38–50, https://doi.org/10.1016/j.csr.2017.05.004, 2017.
 - Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C.E., Cross, J., Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G., Ilyina, T., Jain, A. K., Kato, E., Kautz, M.,

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

705

710

725

- Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lima, I.,
 Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S. I., Nojiri, Y.,
 Padín, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian,
 R., Skjelvan, I., Stocker, B. D., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S.,
 Viovy, N., Vuichard, N., Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S. and Zhu, D.: Global Carbon Budget
 2017. Earth System Science Data Discussions, 1–79, https://doi.org/10.5194/essd-2017-123, 2017.
 - Litt, E. J., Hardman-Mountford, N. J., Blackford, J. C., and Mitchelson-Jacob, G. A. Y.: Biological control of pCO₂ at station L4 in the Western English Channel over 3 years, J. Plank. Res, 32, 621–629, https://doi.org/10.1093/plankt/fbp133, 2018.
 - Liu, S. M., Zhu, B. D., Zhang, J., Wu, Y., Liu, G. S., Deng, B., Zhao, M. X., Liu, G. Q., Du, J. Z., Ren, J. L., and Zhang, G. L.: Environmental change in Jiaozhou Bay recorded by nutrient components in sediments, Mar. Pollut. Bull., 60, 1591–1599, https://doi.org/10.1016/j.marpolbul.2010.04.003, 2010.
 - Lohrenz, S. E., Cai, W. J., Chen, F., Chen, X., and Tuel, M.: Seasonal variability in air-sea fluxes of CO₂ in a river-influenced coastal margin, J. Geophys. Res. Ocean., 115, 1–13, https://doi.org/10.1029/2009JC005608, 2010.
 - Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO₂ calculated from dissolved inorganic carbon alkalinity, and equations for K_1 and K_2 : validation based on laboratory measurements of CO₂ in gas and seawater at equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
 - Mackenzie, F. T., Bewers, J. M., Charlson, R. J., Hofmann, E. E., Knauer, G. A., Kraft, J. C., Nöthig, E. M., Quack, B., Walsh, J. J., Whitfield, M., and Wollast, R.: What is the importance of ocean margin processes in global change?, in: Ocean Margin Processes in Global Change, edited by: Mantoura, R. F. C., Martin, J. M., Wollast, R., Dahlem workshop reports, J. Wiley & Sons, Chichester, 433–454, 1991.
- Michaels, A. F., Karl, D. M., and Capone, D. G.: Element stoichiometry, new production and nitrogen fixation, Oceanography, 14, 68–77, https://doi.org/10.5670/oceanog.2001.08, 2001.
 - Millero, F.J.: Thermodynamics of the carbon dioxide system in the oceans, Geoch. Cosmo. Acta, 59, 661–677, https://doi.org/10.1016/0016-7037(94)00354-O, 1995.
- Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., and Walsh, J. J.: The importance of continental margins in the global carbon cycle, Geophys. Res. Lett, 32, 1–4, https://doi.org/10.1029/2004GL021346, 2005.
 - Navarro, G., and Ruiz, J.: Spatial and temporal variability of phytoplankton in the Gulf of Cádiz through remote sensing images, Deep. Res. Part II Top. Stud. Oceanogr., 53, 11–13, https://doi.org/10.1016/j.dsr2.2006.04.014, 2006.
 - Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers, Glob. Biogeochem. Cycles, 14, 373–387, http://dx.doi.org/10.1029/1999GB900091, 2000.
 - Oliveira, A. P., Cabeçadas, G., and Pilar-Fonseca, T.: Iberia Coastal Ocean in the CO₂ Sink/Source Context: Portugal Case Study, J. Coast. Res., 279, 184–195. https://doi.org/10.2112/JCOASTRES-D-10-00060.1, 2012.
 - Padin, X. A., Navarro, G., Gilcoto, M., Rios, A. F., and Pérez, F. F.: Estimation of air-sea CO₂ fluxes in the Bay of Biscay based on empirical relationships and remotely sensed observations, J. Mar. Syst., 75, 280–289, https://doi.org/10.1016/j.jmarsys.2008.10.008, 2009.
 - Padin, X. A., Vázquez Rodríguez, M., Castaño, M., Velo, A., Alonso Pérez, F., Gago, J., Gilcoto, M., Álvarez, M., Pardo, P. C., de la Paz, M., Ríos, A.F., and Pérez, F. F.: Air-Sea CO₂ fluxes in the Atlantic as measured during boreal spring and autumn, Biogeosciences, 7, 1587–1606, http://dx.doi.org/10.5194/bg-7-1587-2010, 2010.
- Peliz, A., Dubert, J., Marchesiello, P., and Teles-Machado, A.: Surface circulation in the Gulf of Cádiz: Model and mean flow structure, J. Geophys. Res. Ocean., 112, 1–20, https://doi.org/10.1029/2007JC004159, 2007.
 - Peliz, A., Marchesiello, P., Santos, A. M. P., Dubert, J., Teles-Machado, A., Marta-Almeida, M., and Le Cann, B.: Surface

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

750

- circulation in the Gulf of Cádiz: 2. Inflow-outflow coupling and the Gulf of Cádiz slope current, J. Geophys. Res. Ocean., 114, 1–16, https://doi.org/10.1029/2008JC004771, 2009.
- Pérez, F. F., Ríos, A. F., and Rosón, G.: Sea surface carbon dioxide off the Iberian Peninsula (North Eastern Atlantic Ocean),

 J. Mar. Syst., 19, 27–46, https://doi.org/10.1016/S0924-7963(98)00022-0, 1999.
 - Prieto, L., Garcia, C. M., Corzo, A., Ruiz Segura, J., and Echevarria, F.: Phytoplankton, bacterioplankton and nitrate reductase activity distribution in relation to physical structure in the northern Alboran Sea and Gulf of Cádiz (southern Iberian Península), Bol. Inst. Esp. Oceanogr., 15, 401–411, 1999.
- Qin, B. Y., Tao, Z., Li, Z. W., and Yang, X. F.: Seasonal changes and controlling factors of sea surface pCO₂ in the Yellow Sea, In IOP Conf. Ser.: Earth Environ. Sci., 17, 012025, https://doi.org/10.1088/1755-1315/17/1/012025, 2014.
 - Qu, B., Song, J., Yuan, H., Li, X., and Li, N.: Air-sea CO₂ exchange process in the southern Yellow Sea in April of 2011, and June, July, October of 2012, Cont. Shelf Res., 80, 8–19, https://doi.org/10.1016/j.csr.2014.02.001, 2014.
 - Rabouille, C., Mackenzie, F. T., and Ver, L. M.: Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean, Geoch. Cosmo. Acta, 65, 3615–3641, https://doi.org/10.1016/S0016-7037(01)00760-8, 2001.
 - Reimer, J. J., Cai, W. J., Xue, L., Vargas, R., Noakes, S., Hu, X., Signorini, S. R., Mathis, J. T., Feely, R. A., Sutton, A. J., Sabine, C., Musielewicz, S., Chen, B., and Wanninkhof, R.: Time series pCO₂ at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability, Cont. Shelf Res., 145, 95–108, https://doi.org/10.1016/j.csr.2017.06.022, 2017.
- Relvas, P., Barton, E., Dubert, J., Oliveira, P., Peliz, A., da Silva, J., and Santos, A.: Physical oceanography of the western Iberia, ecosystem: latest views and challenges, Prog. Oceanogr., 74, 149–173, https://doi.org/10.1016/j.pocean.2007.04.021, 2007.
 - Ribas-Ribas, M., Gómez-Parra, A., and Forja, J. M.: Air-sea CO₂ fluxes in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Península), Mar. Chem., 123, 56–66, https://doi.org/10.1016/j.marchem.2010.09.005, 2011.
- Ribas-Ribas, M., Sobrino, C., Debelius, B., Lubián, L.M., Ponce, R., Gómez-Parra, A., and Forja, J. M.: Picophytoplankton and carbon cycle on the northeastern shelf of the Gulf of Cádiz (SW Iberian Península), Sci. Mar., 77, 49–62, https://doi.org/10.3989/scimar.03732.27D, 2013.
 - Ríos, A. F., Pérez, F. F., Álvarez, M. A., Mintrop, L., González-Dávila, M., Santana-Casiano, J. M., Lefèvre, N., and Watson, A. J.: Seasonal sea-surface carbon dioxide in the Azores area, Mar. Chem., 96, 35–51, https://doi.org/10.1016/j.marchem.2004.11.001, 2005.
 - Sala, I., Caldeira, R. M. A., Estrada-Allis, S. N., Froufe, E., and Couvelard, X.: Lagrangian transport pathways in the northeast Atlantic and their environmental impact, Limnol. Oceanogr. Fluids Environ., 3, 40–60, https://doi.org/10.1215/21573689-2152611, 2013.
- Sala, I., Navarro, G., Bolado-Penagos, M., Echevarría, F.,and García, C. M.: High-Chlorophyll-Area Assessment Based on
 Remote Sensing Observations: The Case Study of Cape Trafalgar, Remote Sensing, 10, 165,
 https://doi.org/10.3390/rs10020165, 2018.
 - Sánchez, R. F., and Relvas, P.: Spring-summer climatological circulation in the upper layer in the region of Cape St. Vincent, Southwest Portugal, ICES J. Mar. Sci., 60, 1232–1250, https://doi.org/10.1016/S1054-3139(03)00137-1, 2003.
- Sánchez, R. F., Relvas, P., Martinho, A., and Miller, P.: Physical description of an upwelling filament west of Cape St. Vincent in late October 2004, J. Geophys. Res. Oceans, 113, C07044, https://doi.org/10.1029/2007JC004430, 2008.
 - Sánchez-Leal, R. F., Bellanco, M. J., Fernández-Salas, L. M., García-Lafuente, J., Gasser-Rubinat, M., González-Pola, C., Hernández-Molina, F. J., Pelegrí, J. L., Peliz, A., Relvas, P., Roque, D., Ruiz-Villarreal, M., Sammartino, S. and Sánchez-Garrido, J. C.: The Mediterranean Overflow in the Gulf of Cádiz: A rugged journey, Sci. Adv., 3, eaao0609,

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

790

800

805

- https://doi.org/10.1126/sciadv.aao0609, 2017.
- Santana-Casiano, J. M., Gonzalez-Davila, M., and Laglera, L. M.: The carbon dioxide system in the Strait of Gibraltar, Deep Sea Res. Part II Top. Stud. Oceanogr., 49, 4145–4161, https://doi.org/10.1016/S0967-0645(02)00147-9, 2002.
 - Santana-Casiano, J., González-Dávila, M., and Ucha, I.: Carbon dioxide fluxes in the 638 Benguela upwelling system during winter and spring: A comparison between 2005 and 2006, Deep Sea Res. II Top. Stud. Oceanogr., 56, 533–541, https://doi.org/10.1016/j.dsr2.2008.12.010, 2009.
- Schiettecatte, L. S., Thomas, H., Bozec, Y., and Borges, A. V.: High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea, Mar. Chem., 106, 161–173, https://doi.org/10.1016/j.marchem.2007.01.001, 2007.
 - Shadwick, E. H., Thomas, H., Comeau, A., Craig, S. E., Hunt, C. W., and Salisbury, J. E.: Air-sea CO₂ fluxes on the Scotian Shelf: Seasonal to multi-annual variability. Biogeosciences, 7, 3851–3867, https://doi.org/10.5194/bg-7-3851-2010, 2010.
 - Shaw, E. C., and McNeil, B. I.: Seasonal variability in carbonate chemistry and air-sea CO₂ fluxes in the southern Great Barrier Reef, Mar. Chem., 158, 49–58, https://doi.org/10.1016/j.marchem.2013.11.007, 2014.
 - Shim, J. H., Kim, D., Kang, Y. C., Lee, J. H., Jang, S. T., and Kim, C. H.: Seasonal variations in pCO₂ and its controlling factors in surface seawater of the northern East China Sea, Cont. Shelf Res., 27, 2623-2636, https://doi.org/10.1016/j.csr.2007.07.005, 2007.
- Smith, S. V., and Hollibaugh, J. T.: Coastal metabolism and the oceanic organic carbon balance, Rev. Geophys, 31, 75–89, https://doi.org/10.1029/92RG02584, 1993.
 - Suykens, K., Delille, B., Chou, L., De Bodt, C., Harlay, J., and Borges, A. V.: Dissolved inorganic carbon dynamics and airsea carbon dioxide fluxes during coccolithophore blooms in the northwest European continental margin (northern Bay of Biscay), Global Biogeochem. Cycles, 24, 1–14, https://doi.org/10.1029/2009GB003730, 2010.
 - Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C.: Seasonal variations of CO₂ and nutrients in the high-latitude surface oceans: A comparative study, Global Biogeochem. Cycles, 7, 843–878, https://doi.org/10.1029/93GB02263, 1993.
 - Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and temperature effects, Deep Sea Res. Part II Top. Stud. Oceanogr., 49, 1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
 - Thomas, H., Bozec, Y., Elkalay, K., and De Baar, H. J. W.: Enhanced Open Ocean Storage of CO₂ from Shelf Sea Pumping, Science, 304, 1005–1008, https://doi.org/10.1126/science.1095491, 2004.
 - Tseng, C. M., Liu, K. K., Gong, G. C., Shen, P. Y., and Cai, W. J.: CO₂ uptake in the East China Sea relying on Changjiang runoff is prone to change, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL049774, 2011.
- Vandemark, D., Salisbury, J. E., Hunt, C. W., Shellito, S. M., Irish, J. D., McGillis, W. R., Sabine, C. L., and Maenner, S. M.: Temporal and spatial dynamics of CO₂ air–sea flux in the Gulf of Maine, J. Geophys. Res.: Oceans, 116, C01012, http://dx.doi.org/10.1029/2010JC006408, 2011.
 - van Geen, A., Takesue, R. K., Goddard, J., Takahashi, T., Barth, J. A., and Smith, R. L.: Carbon and nutrient dynamics during coastal upwelling off Cape Blanco, Oregon. Deep Sea Res. Part II Top. Stud. Oceanogr., 47, 975–1002, https://doi.org/10.1016/S0967-0645(99)00133-2, 2000.
 - Vargas-Yáñez, M., Viola, T. S., Jorge, F. P., Rubín, J. P., and García, M. C.: The influence of tide-topography interaction on low-frequency heat and nutrient fluxes. Application to Cape Trafalgar, Cont. Shelf Res., 22, 115–139, https://doi.org/10.1016/S0278-4343(01)00063-2, 2002.

Manuscript under review for journal Ocean Sci.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

840

845

- Volk, T., and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric 820 CO₂ changes in The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32, https://doi.org/10.1029/GM032p0099, 1985.
 - Walsh, J. J.: On the Nature of Continental Shelves, Academic Press, New York, 510 pp., 1988
 - Walsh, J. J.: Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen, Nature, 350, 53–55, http://dx.doi.org/10.1038/350053a0, 1991.
- Wang, S. L., Arthur Chen, C. T., Hong, G. H., and Chung, C. S.: Carbon dioxide and related parameters in the East China Sea, Cont. Shelf Res., 20, 525–544, https://doi.org/10.1016/S0278-4343(99)00084-9, 2000.
 - Wang, Z. A., Cai, W. J., Wang, Y., and Ji, H.: The southeastern continental shelf of the United States as an atmospheric CO₂ source and an exporter of inorganic carbon to the ocean, Cont. Shelf Res., 25, 1917–1941, https://doi.org/10.1016/j.csr.2005.04.004, 2005.
- Wanninkhof, R.: Relationship between wind speed and gas exchange, J. Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
 - Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.: Advances in quantifying air-sea gas exchange and environmental forcing, Annu. Rev. Mar. Sci., 1, 213–244., https://doi.org/10.1146/annurev.marine.010908.163742, 2009.
- Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods, 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
 - Weiss, R.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
 - Wollast, R.: The Coastal Carbon Cycle: Fluxes, Sources and Sinks, in: Ocean Margin Processes in Global Change Mantoura, edited by: R. F. C., Martin, J. M., and Wollast, R., J. Wiley & Sons, Chichester, 365–382, 1991.
 - Wollast, R.: Interactions of Carbon and Nitrogen cycles in the Coastal Zone, in: Interactions of C, N, P, and S biogeochemical cycles and global change, edited by: Wollast R., Mackenzie F. T., and Chou L., Springer, Berlin, NATOASI Series, 14, 195–210, https://doi.org/10.1007/978-3-642-76064-8_7, 1993.
 - Woolf, D. K., and Thorpe, S. A.: Bubbles and the air-sea ex-change of gases in near-saturation conditions, J. Mar. Res., 49, 435–466, https://doi.org/10.1357/002224091784995765, 1991.
 - Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., and Donlon, C. J.: On the calculation of air-sea fluxes of CO₂ in the presence of temperature and salinity gradients, J. Geophys. Res. Oceans, 121, 1229–1248, https://doi.org/10.1002/2015JC011427, 2016.
- Xue, L., Xue, M., Zhang, L., Sun, T., Guo, Z., and Wang, J.: Surface partial pressure of CO₂ and air-sea exchange in the northern Yellow Sea, J. Mar. Syst., 105–108, 194–206, https://doi.org/10.1016/j.jmarsys.2012.08.006, 2012.
 - Xue, L., Gao, L., Cai, W. J., Yu, W., and Wei, M.: Response of sea surface fugacity of CO₂ to the SAM shift south of Tasmania: Regional differences, Geophys. Res. Lett., 42, 3973–3979, https://doi.org/10.1002/2015GL063926, 2015.
 - Xue, L., Cai, W. J., Hu, X., Sabine, C., Jones, S., Sutton, A. J., Jiang, L. Q., and Reimer, J. J.: Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes, Prog. Oceanogr., 140, 14–26, https://doi.org/10.1016/j.pocean.2015.09.008, 2016.
 - Yentsch, C. S., and Menzel, D. W.: A method for the determination of phytoplankton chlorophyll and pheophytin by fluorescence, Deep Sea Res. and Oceanogr. Abstracts, 10, 221–231, https://doi.org/10.1016/0011-7471(63)90358-9, 1963.
 - Zeebe, R. E., and Wolf-Gladrow, D. A.: CO₂ in seawater: equilibrium, kinetics, isotopes, Elsevier Oceanography Series, 347 pp., 2001.
- 860 Zhai, W., Dai, M., and Cai, W., Coupling of surface pCO₂ and dissolved oxygen in the northern South China Sea: impacts of

Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-6 Manuscript under review for journal Ocean Sci. Discussion started: 15 February 2019

© Author(s) 2019. CC BY 4.0 License.

 $contrasting\ coastal\ processes,\ Biogeosciences,\ 6,\ 2589-2598,\ https://doi.org/10.5194/bgd-6-6249-2009,\ 2009.$

Zhang, L., Xue, L., Song, M., and Jiang, C.: Distribution of the surface partial pressure of CO_2 in the southern Yellow Sea and its controls, Cont. Shelf Res., 30, 293–304, https://doi.org/10.1016/j.csr.2009.11.009, 2010.

Zhang, L., Xue, M., and Liu, Q.: Distribution and seasonal variation in the partial pressure of CO₂ during autumn and winter in Jiaozhou Bay, a region of high urbanization, Mar. Pollut. Bull., 64, 56–65, https://doi.org/10.1016/j.marpolbul.2011.10.023, 2012.

Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-6 Manuscript under review for journal Ocean Sci. Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

24

.,	570	1	T (T (°C)	δ	7.0	pCO ₂ (μatm)	(natm)
rmse	Date	=	Range	Mean ± SD	Range	Mean ± SD	Range	Mean ± SD
ST1	$28/03 - 01/04$, $2014 3874 14.3 - 16.4 15.4 \pm 0.6 35.57 - 37.06 36.11 \pm 0.18 365.4 - 513.6$	3874	14.3 - 16.4	15.4 ± 0.6	35.57 - 37.06	36.11 ± 0.18	365.4 - 513.6	396.5 ± 19.0
ST2	25/06 - 01/07, 2014	4118	17.0 - 22.9	4118 17.0 - 22.9 21.1 ± 0.9	35.90 - 36.45	36.21 ± 0.15	$35.90 - 36.45 36.21 \pm 0.15 368.7 - 459.5$	412.9 ± 12.6
ST3	$01/10 - 07/10$, $2014 + 4233 + 16.1 - 23.4 + 21.5 \pm 1.3 + 35.80 - 36.79 + 36.26 \pm 0.22 + 391.6 - 444.5 = 391.6 - 441.5 = 391.6 = 391$	4233	16.1 - 23.4	21.5 ± 1.3	35.80 - 36.79	36.26 ± 0.22	391.6 - 444.5	413.5 ± 9.8
ST4	10/12 - 16/12, 2014	2938	15.6 - 19.1	15.6 - 19.1 18.1 ± 0.7		$34.68 - 36.72$ 36.36 ± 0.21	369.6 - 444.5	388.7 ± 12.9
ST5	28/03 - 01/04, 2015	3180	14.6 - 16.9	15.6 ± 0.4		$35.54 - 36.52 36.12 \pm 0.14$	320.6 - 416.5	368.6 ± 14.9
ST6	19/06 - 25/06, 2015	3677	17.4 - 22.1	20.9 ± 0.8		$35.63 - 36.92$ 36.40 ± 0.08	372.1 - 464.1	410.3 ± 13.8
ST7	15/09 - 18/09, 2015	2575	17.0 - 21.9	20.6 ± 1.1	$35.02 - 36.79 35.64 \pm 0.08$	35.64 ± 0.08	387.6 - 457.1	407.6 ± 11.2
ST8	$02/02 - 03/02$, $2016 - 1812 - 15.1 - 17.5 - 16.8 \pm 0.4 - 35.83 - 36.55 - 36.44 \pm 0.09 - 346.2 - 442.6$	1812	15.1 - 17.5	16.8 ± 0.4	35.83 - 36.55	36.44 ± 0.09	346.2 - 442.6	392.9 ± 17.9

Table 1: Date, number of measurements (n), range, average values and standard deviation of sea surface temperature (T), sea surface salinity (S) and pCO2 during the 8 cruises undertaken: March 2014 (ST1), June 2014 (ST2), October 2014 (ST3), December 2014 (ST4), March 2015 (ST5), June 2015 (ST6), September 2015 (ST7) and February 2016

870

Tables

Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-6 Manuscript under review for journal Ocean Sci. Discussion started: 15 February 2019

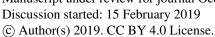


Table 2: Number of samples (n) and average values and standard deviation of temperature, salinity, pH, apparent oxygen utilization (AOU), chlorophyll, nitrate and phosphate in surface water samples (at depth of 5m) at fixed stations during the 8 cruises: March 2014 (ST1), June 2014 (ST2), October 2014 (ST3), December 2014 (ST4), March 2015

Cruise	u	Cruise n Temperature (°C)	Salinity	$^{ m hd}$	AOU (μ mol L ⁻¹)	AOU (μ mol L ⁻¹) Chlorophyll (μ g L ⁻¹)* Nitrate (μ mol L ⁻¹) Phosphate (μ mol L ⁻¹)	Nitrate (µmol L-1)	Phosphate (µmol L-1)
ST1	18	315.3 ± 0.5	36.08 ± 0.14	8.06 ± 0.03	-3.6 ± 8.4	0.65 ± 0.37	0.96 ± 1.01	0.14 ± 0.06
ST2 16	16	21.0 ± 1.3	36.11 ± 0.11	7.97 ± 0.03	-10.3 ± 5.7	0.18 ± 0.14	0.42 ± 0.60	0.12 ± 0.04
ST3 17	17	21.7 ± 0.7	36.11 ± 0.14	7.97 ± 0.06	-4.6 ± 3.2	0.24 ± 0.29	0.34 ± 0.27	0.09 ± 0.03
ST4	17	17.7 ± 0.7	36.26 ± 0.27	8.05 ± 0.05	7.7 ± 2.1	0.46 ± 0.33	1.05 ± 1.96	0.23 ± 0.09
ST5 16 1	16	15.5 ± 0.3	36.03 ± 0.13	8.09 ± 0.12	-19.1 ± 9.4	0.76 ± 0.55	0.68 ± 1.17	0.17 ± 0.09
ST6 16	16	21.1 ± 1.0	36.37 ± 0.05	8.01 ± 0.03	-2.4 ± 3.2	0.26 ± 0.34	0.12 ± 0.14	0.10 ± 0.05
ST7	17	20.6 ± 1.2	35.63 ± 0.02	7.94 ± 0.03	-2.6 ± 5.0	0.29 ± 0.31	0.37 ± 0.50	0.50 ± 0.55
ST8 6	9	16.8 ± 0.2	36.45 ± 0.05	8.09 ± 0.05	-5.1 ± 3.1	0.69 ± 0.32	0.41 ± 0.31	0.14 ± 0.11

25

(ST5), June 2015 (ST6), September 2015 (ST7) and February 2016 (ST8).

Discussion started: 15 February 2019

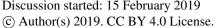


Table 3: Mean values and standard deviation of atmospheric pCO₂ (pCO₂ µatm), wind speed, gas transfer velocity (k) and CO2 fluxes during the 8 cruises: March 2014 (ST1), June 2014 (ST2), October 2014 (ST3), December 2014 (ST4), March 2015 (ST5), June 2015 (ST6), September 2015 (ST7) and February 2016 (ST8).

Cruise	pCO ₂ atm (µatm)	Wind speed (m s ⁻¹)	k (cm h ⁻¹)	CO ₂ fluxes (mmol m ⁻² d ⁻¹)
ST1	398.7 ± 1.8	7.7 ± 3.4	13.4 ± 0.2	-0.3 ± 2.3
ST2	404.5 ± 0.5	7.4 ± 3.4	14.0 ± 0.3	0.9 ± 1.4
ST3	397.7 ± 0.6	6.7 ± 4.0	11.8 ± 0.4	1.4 ± 0.8
ST4	399.4 ± 2.2	7.7 ± 4.2	14.3 ± 0.2	-1.3 ± 1.7
ST5	405.5 ± 0.6	5.5 ± 2.8	6.9 ± 0.1	-2.3 ± 0.9
ST6	406.1 ± 0.8	7.5 ± 4.1	14.4 ± 0.3	0.5 ± 1.5
ST7	398.4 ± 0.7	7.0 ± 3.2	12.3 ± 0.3	0.9 ± 1.1
ST8	406.4 ± 0.3	6.8 ± 3.1	10.6 ± 0.1	-1.3 ± 1.6

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

Table 4: Correlations estimated between pCO_2 and temperature $(T,\,^{\circ}C)$ and regression coefficients (r^2) in different shelf areas.

Site	Correlation pCO ₂ - T	\mathbf{r}^2	Reference
East China Sea	$pCO_2 = 221 + 5.48 T$	0.9	Wang et al., 2000
Southeastern continental		0.96	Wang et al., 2005
shelf of the United States	$Ln(pCO_2) = 5.2505 + 0.0232 T$		
Northern East China Sea	$pCO_2 = 169.7 + 38.19 T$	0.88	Shim et al., 2007
Southeastern continental shelf of the United States	$Ln(pCO_2) = 4.611 + 0.058 T$	0.73	Jiang et al., 2008
Eastern shelf of the Gulf of Cádiz	$pCO_2 = 269.1 + 5.03 T$	0.42	Ribas-Ribas et al., 2011
Northern Yellow Sea	$pCO_2 = 141.3 + 13.7 T (Summer)$	0.56	Xue et al., 2012
	$pCO_2 = 594.5 - 10.7 T \text{ (Autumn)}$	0.28	
	$pCO_2 = 232.9 + 22.0 \text{ T (Winter)}$	0.71	
	$pCO_2 = 813.0 - 46.7 \text{ T (Spring)}$	0.69	
Continental shelf of Australia	$Ln(pCO_2) = 4.9 + 0.038 T$	0.74	Shaw et al., 2014
Gulf of Cádiz	$pCO_2 = 309.2 + 4.80 \text{ T}$	0.37	This work

Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-6 Manuscript under review for journal Ocean Sci. Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

Sire	FCC2 allu		Site S. Macan average and range of program CO2 mass (r.CO2) in united the shell areas of the 100 th Augustic.	nCO ₂ (Hafm)	FCO, (mmol m ⁻² d ⁻¹)*	Reference
North Fastern Atlantic Ocean	-110	40.0 - 43.0	May November December 1993: Inly Angust 1994	320 - 430	-0 47a	Dérez et al. (1999).
Upwelling system off the Galician coast	-9.310.1	42.1 - 43.2	June, July 1997, January, June, July, August, December 1998, January, August, September 1999	265 - 415	-4.72.3 ^b	Borges and Franki gnoulle (2002)
US Middle Atlantic Bight	-76.069.0	35.0 - 42.0	February, March, May, June, October 1996	220 - 560	4.41.9 ^b	DeGranpre et al. (2002)
Strait of Gibraltar	-5.55.2	35.6 - 36.0	September 1997; February 1998; May 1999	350 - 354	-6.9 ^b	Santana-Casiano et al. (2002)
English Channel	-6.04.0	47.5 - 51.5	March, September 1995; May, June, July 1997; January, June, July, November 1998; August, September 1999	200 - 500	-20.0 - 12.0°	Borges and Franki gnoulle (2003)
Ría de Vigo	-8.98.6	42.1 - 42.3	April, July, September, October, November, December 1997	285 - 615	-1.5 - 1.8a	Gago et al. (2003)
Gulf of Cádiz	-7.06.5	36.3 - 36.7	February 1998	334 - 416	-19.5 ± 3.5^{b}	González-Dávila et al. (2003)
Northern and central North Sea	-3.0 - 10.0	50.0 - 62.0	August, September, November 2001; February, March, May 2002		4.6 ^b	Thomas et al. (2004)
North Sea	-3.0 - 10.0	50.0 - 61.0	August, September 2001	220 - 490	-3.4b	Bozec et al. (2005)
Gulf of Cádiz	-8.36.0	33.5 - 37.0	July 2002		18.6 ± 4^{b}	Aït-Ameur and Goyet (2006)
Northeastern shelf of the Gulf of Cádiz	-7.56.3	36.6 - 37.3	March 2003 to March 2004	196 - 650	-2.5 - 1.0 ^b	Huertas et al. (2006)
Southern North Sea	0.5 - 4.5	50.0 - 53.0	February, March, April, June, August, September, October 2001; February, April, June, August, September, October 2002; August, December 2003; February, May 2004	149 - 479	-23.7 - 6.7 ^b	Schiettecatte et al. (2007)
US South Atlantic Bight	-81.576.5	28.5 - 34.5	January, March, July, August, October, December 2005; May 2006	330 - 1300	-3.8 - 3.3 ^b	Jiang et al. (2008)
Strait of Gibraltar	-6.05.2	35.8 - 36.1	September 2005; December 2005; March, May 2006	320 - 400	-1.9 - 1.9 ^b	de la Paz et al. (2009)
Bay of Biscay	-10.02.0	42.0 - 47.5	September 1994 to December 2004	310 - 375	-11.0 - 0.8 ^b	Padin et al. (2009)
Gulf of Mexico	-91.089.7	28.0 - 29.3	August 2004; October 2005; April 2006	200 - 600	-1.17 - 5.4 ^b	Lohrenz et al. (2010)
Scotian Shelf	-66.057.0	39.5 - 48.0	July, August, September, October, December 2007; January, February, March, April, May, June 2008	203 - 443	1.8 ± 1.3^{b}	Shadwick et al. (2010)
Northem Bay of Biscay	-11.05.0	47.0 - 51.5	June 2006; May 2007; May 2008	248 - 342	-11.97.4 ^d	Suykens et al. (2010)
Northeastern shelf of the Gulf of Cádiz	-6.86.3	36.6 - 37.3	June 2006; November 2006; February 2007	338 - 502	-2.2 - 3.6 ^b	Ribas-Ribas et al. (2011)
Portuguese Southern outer continental shelf	-8.0	36.0	October 2001	700 - 1130	$12\pm 8^{\text{b}}$	Oliveira et al. (2012)
Northem Gulf of Mexico	-94.088.0	27.5 - 30.5	August 2004; October 2005; April, June, September 2006; May, August 2007; July 2008; January, April, July, October 2009; March 2010	171 - 2222	-14.3 - 13.1 ^d	Huang et al. (2015)
Cariaco Basin	-66.3 - 64.0	10.0 - 11.3	March 2004, September 2006; September 2008; March 2009	366 - 525	0.0 - 10.0 ^b	Astor et al. (2017)
Mauritanian-Cap Vert upwelling region	-19.014.0	10.0 - 28.0	From 2005 to 2012	275 - 750	-0.2 - 3.3°	González-Dávila et al. (2017)
US South Atlantic Bight	-81.076.0	28.0 - 35.0	July 2007; August, December 2008; May, November 2009; February, April, August, October 2010; March, April, October, December 2011; February, May, August 2012; September 2013; May, July, September, November, December 2014; April, June, July 2015	253 - 567	-1.8 - 2.0e	Reimer et al. (2017)
Gulf of Cádiz	-6.07.2	35.4 - 36.7	March, June, October, December 2014; March, June, September 2015; March 2016	321 - 514	-2.3 - 1.5 ^r	This work
*Gas transfer coefficient (k): a Woolf and Thome (1991) b Wann	4 (1991) b Wann	inkhof (1992)	Nightingale et al. (2000). d Ho et al. (2006). Wanninkhof et al. (2009) and (Wanninkhof et al. (2014)	4 f Wonninkhof of	1 (2014)	

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

Figures

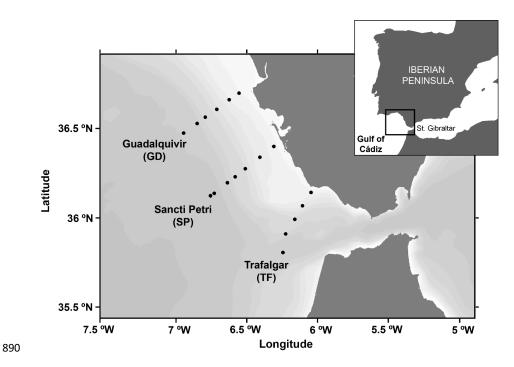
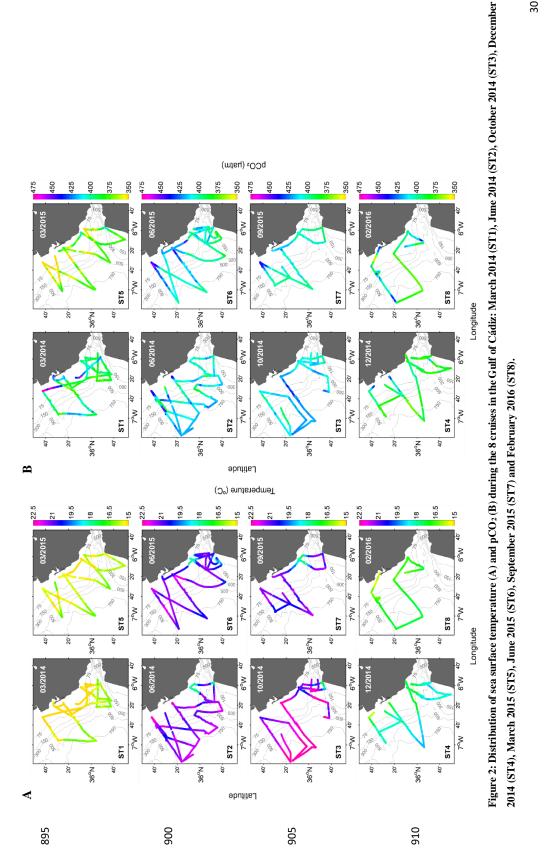
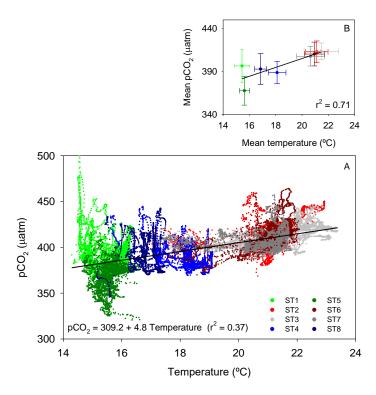



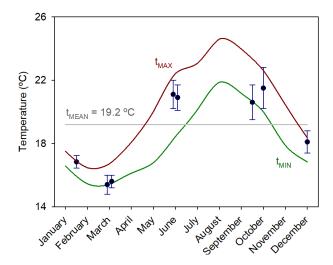
Figure 1: Map of the eastern shelf of the Gulf of Cádiz showing the location of fixed stations located on 3 transects at right-angles to the coastline: Guadalquivir (GD), Sancti Petri (SP) and Trafalgar (TF).

Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-6 Manuscript under review for journal Ocean Sci. Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

30

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.




Figure 3: Dependence of pCO₂ with sea surface temperature for the complete underway database during all the cruises

(A) and for the mean values of pCO₂ and temperature for each cruise showing their standard deviations (B). The solid line shows the linear correlation.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

945 Figure 4: Maximum and minimum sea surface temperature variation during a 10-year period recorded by a mooring located in the Gulf of Cádiz (36.48°N - 6.96°W). The red line shows maximum sea surface temperature variation. The green line shows minimum sea surface temperature variation. The grey line shows the average temperature for the 10-year period. Blue circles show mean values and standard deviations of sea surface temperature measured during the eight cruises carried out during this study.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

955

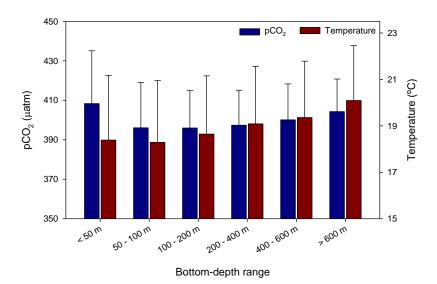


Figure 5: Variation of pCO_2 (μ atm) and temperature (°C) at different bottom-depth ranges of the water column (m) during the 8 cruises. The mean values and standard deviations of pCO_2 (blue) and temperature (red) for each range of depth are represented.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

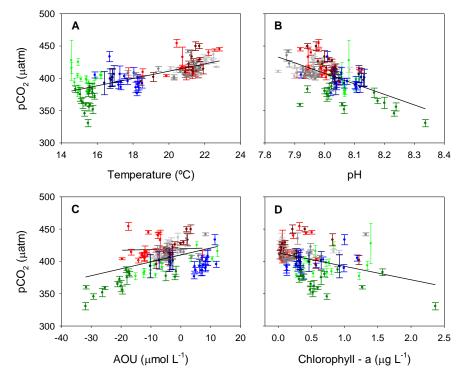


Figure 6: Dependence between the surface values of pCO₂ and temperature (A, $r^2 = 0.48$), pH (B, $r^2 = 0.34$), AOU (C, $r^2 = 0.21$) and chlorophyll-a (D, $r^2 = 0.14$) at the 16 discrete stations during the 8 cruises. pCO₂ presents the standard deviation associated with the mean value obtained from the underway measurements.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

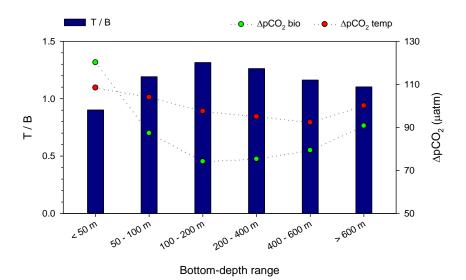


Figure 7: Variation of the T/B ratio (blue bar), ΔpCO_2 bio (green point) and ΔpCO_2 temp (red point) at different bottom-depth ranges of the water column (m) for the 8 cruises.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

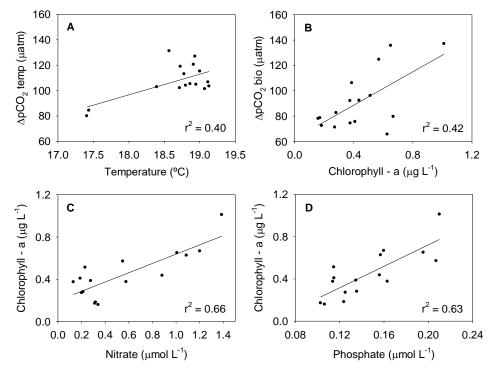


Figure 8: Correlations between A) ΔpCO_2 temp and temperature, B) ΔpCO_2 bio and chlorophyll-a, C) chlorophyll-a and nitrate and D) chlorophyll-a and phosphate for the mean values at the 16 discrete stations during the 8 cruises.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

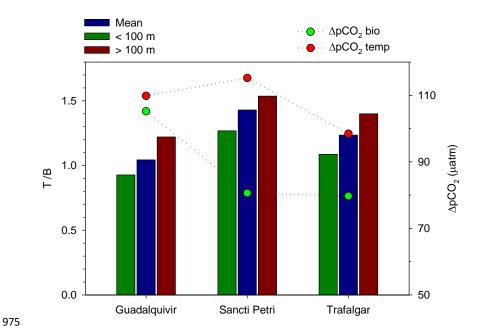


Figure 9: Variation of the mean T/B ratio (blue bar), the mean T/B ratio at depths < 100 m (green bar), the mean T/B ratio at depths > 100 m (red bar), ΔpCO_2 bio (green point) and ΔpCO_2 temp (red point) on the various transects of the study (Guadalquivir, Sancti Petri and Trafalgar) during the 8 cruises.

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

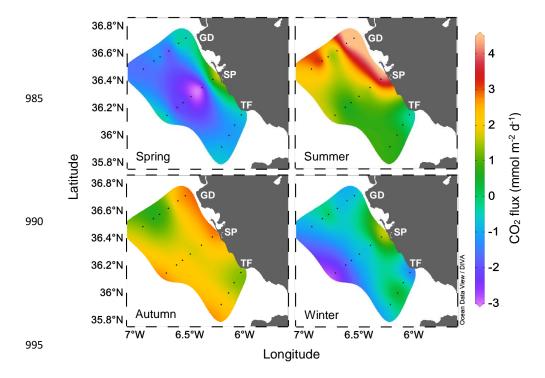


Figure 10: Spatial distribution of mean values of CO_2 fluxes in the eastern shelf of the Gulf of Cádiz during spring (ST1, ST5), summer (ST2, ST6), autumn (ST3, ST7) and winter (ST4, ST8).

Discussion started: 15 February 2019 © Author(s) 2019. CC BY 4.0 License.

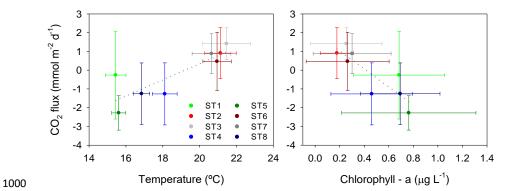


Figure 11: Correlations between the mean values of CO_2 fluxes and sea surface temperature (T) for the underway database (left, $r^2 = 0.72$), and the CO_2 fluxes and chlorophyll-a at the 16 discrete surface stations (right, $r^2 = 0.74$) for each cruise and showing the standard deviations.